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Abstract 

A closed convex polytope in n dimensions is defined by the usual linear inequality constraints 

specified as Ax ≤ b. The BI center of such a polytope is defined as that interior point which bisects all 

the line segments drawn through that point, parallel to each of the coordinate axes. The existence 

and uniqueness of such a center for the general case has been shown earlier. The BI center is also a 

maximiser of an appropriately defined multivariate function, as shown earlier. Three algorithms are 

proposed here for calculating the BI center iteratively. The first one is an implementation of the well-

known coordinate search algorithm (CS). The second one is a generalization of this algorithm which 

uses simultaneous coordinate search for all coordinate directions (SCS). The third algorithm involves 

solution of simultaneous linear equations using matrix inversion (MI). The advantages and 

disadvantages of these algorithms are discussed. Any of these algorithms can be used by itself, 

starting from any interior point, to calculate the BI center. However, the CS and SCS algorithms 

approach the BI center rapidly at first, but the progress becomes slower as they get closer to the BI 

center. On the other hand, the MI algorithm can give the exact BI center in one step, if it is started 

from a point reasonably close to the BI center. These characteristics can be combined beneficially by 

approaching the BI center initially with the CS or SCS algorithm, and then taking the final steps with 

the MI algorithm, to get the BI center exactly. Preliminary computational results are presented for 

some simple polytopes for illustration, using these three algorithms.  

 

1. Introduction 

Defining and calculating the center of a closed convex polytope has attracted interest for a long 

time. Many different definitions have been used for the center, which include the center of mass of 

the entire polytope, the centroid of all vertices, the center of the largest inscribed sphere (or an 

ellipsoid), the center of the smallest sphere (or ellipsoid) which includes the polytope, the analytical 

center, the weighted projection center, and orthogonal projections on to polytope faces. All these 

definitions lead to different points as centers, whose calculation involves different degrees of 

computational effort. One of the motivations for these centers has been the fact that most interior 

point algorithms for solving linear programming problems involve a centering step at periodic 

intervals. Therefore, any method which leads to efficient calculation of a uniquely defined center 

may become useful in interior point linear programming algorithms. 

In this paper, we further investigate the BI center proposed earlier by Patwardhan [2019]. The BI 

center of a closed convex polytope is defined as that interior point which bisects all the line 

segments drawn through that point, parallel to each of the coordinate axes. We present here, three 

different algorithms which can be used for calculating the BI center, starting from any interior point. 
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Computational results obtained with all three algorithms are presented for a couple of simple 

polytopes and compared with each other for illustration.  

2. Calculation of intersections with polytope boundary 

We consider here, a closed convex polytope in n dimensions defined by the usual linear inequality 

constraints specified as Ax ≤ b. It is assumed here that all the m constraints are inequality 

constraints, i.e. there are no equality constraints. (Any equality constraint can be removed by 

eliminating any one variable using the equality constraint.) The ith constraint can be written as 

 
∑ 𝐴𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖

𝑛

𝑗=1

        𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚 (1) 

 

Let P be a strictly feasible interior point so that we can write 

  
∑ 𝐴𝑖𝑗𝑃𝑗 < 𝑏𝑖

𝑛

𝑗=1

        𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚 (2) 

 

The slacks at point P can be denoted as Si, which are given by 

 
𝑆𝑖 = 𝑏𝑖 − ∑ 𝐴𝑖𝑗𝑃𝑗

𝑛

𝑗=1

 (3) 

 

Since P is an interior point, Si > 0 for all i. A line drawn through P, parallel to the kth axis, intersects 

the ith constraint after travelling a distance dik given by 

 
𝑑𝑖𝑘 = 𝑆𝑖/𝐴𝑖𝑘         𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑛 (4) 

If Aik = 0, then dik becomes infinite, i.e. there is no intersection with constraint i. If Aik > 0, then dik > 0, 

i.e. the line drawn in the +xk direction intersects the ith constraint. On the other hand, if Aik < 0, then 

dik < 0, i.e. the line drawn in the -xk direction intersects the ith constraint. Let d+k  and d-k be the 

distances to the first intersection in the +xk and -xk directions respectively, and let Q+k  and Q-k be the 

corresponding points of intersection. These are given by 

 
𝑑+𝑘 = min(𝑑𝑖𝑘)  𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑖, 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝐴𝑖𝑘 > 0 (5) 

and 

 
𝑑−𝑘 = max(𝑑𝑖𝑘)  𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑖, 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝐴𝑖𝑘 < 0 (6) 

It is obvious that d+k > 0, and d-k < 0. Let Qk be the midpoint of the line segment Q-k Q+k . Then dk , the 

distance between P and Qk , is given by 
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𝑑𝑘 = (𝑑+𝑘 + 𝑑−𝑘) 2⁄  (7) 

3. Characterisation of the BI center 

The closeness of the interior point P to the BI center of the polytope can be characterised by the 

function  

 
𝐹 = ∏ 𝐹𝑘

𝑛

𝑘=1

 

 

(8) 

where 

 
𝐹𝑘 = (−4)

( 𝑑+𝑘  𝑑−𝑘)

(𝑑+𝑘 − 𝑑−𝑘)2
 

 

(9) 

If P coincides with Qk , then d+k  = -d-k , and Fk = 1. This is the reason why the factor of (-4) is used in 

Equation (9). On the other hand, if P lies at the polytope boundary, then either d+k  = 0 or d-k =0, and 

therefore Fk = 0. Thus, equations (8) and (9) show that F is zero at the polytope boundary, is equal to 

1 at the BI center, and has some value between 0 and 1 everywhere else (Patwardhan [1]). 

The problem of finding the BI center is essentially one of maximising F (to a value of 1) using 

unconstrained optimisation. It may be noted that although F is continuous over the feasible region, 

i.e. the polytope, it’s first derivative is only piecewise continuous, in view of the edges present on 

the polytope boundary which is defined by linear intersecting constraints. Therefore, optimisation 

techniques based on using the first derivative are not suitable for our purpose, although such 

techniques are very well developed, tested and documented (for example, one may refer to 

Djordjevic [2]). We need to use a method which uses only function values without any derivatives. 

There is a class of algorithms called as coordinate search algorithms (CS) which can be used here 

since they only use function values. (Since optimisation problems are often stated in a form where a 

function is to be minimised, these algorithms are often termed as coordinate descent algorithms. 

However, we use the term CS to refer to minimising or maximising a given function. Our problem 

here involves maximising F). A good recent introduction to coordinate search is available (Shi H. M. 

et al. [3]).  

Let us now consider three algorithms which can be used for calculating the BI center. 

4. Coordinate search algorithm (CS) 

The idea here is to go from a given interior point P to a new point Q in n stages, changing one 

coordinate at a time using Equation (7), and repeat this step iteratively till we approach the BI center 

sufficiently closely. Variations of this algorithm are described by Astolfi [4]. 

One step of this algorithm consists of the following: Given an interior point P, we get the point Q1 , 

which is the midpoint of the line segment through P in the x1 direction, which also maximises F1 

along the line segment. Then we get the point Q2 which is the midpoint of the line segment through 

Q1 in the x2 direction, which maximises F2 along the line segment. We continue this till we get point 

Qn, which is the midpoint of the line segment through Qn-1 in the xn direction. This completes the 
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step. It may be noted that at each step we go to a point which bisects some line segment, thereby 

ensuring that we do not approach the polytope boundary closely. This process is continued till we 

approach the BI center closely. 

The details of the algorithm are given below. An arbitrary factor α is used for flexibility. This is 

equivalent to travelling a distance equal to αdk towards the center of the line segment at each stage, 

instead of the full distance dk. 

_____________________________________________________ 

CS Algorithm:  
Given : iter = 0, and Piter = P0 (an interior point) 
     Do while F(Piter) < a critical value (such as 0.99) 
          Q(j) = Piter(j) for j = 1 to n 
               For k = 1 to n 
                    Q(k) = Q(k) + α dk   using eq.(7) 
                    Update Si at Q for all i where Aik is nonzero 
               Next k 
          iter = iter + 1 
          Piter(j) = Q(j) for j = 1 to n 
     End do 
Piter is the BI center of the polytope 

 
 

_____________________________________________________ 

Let us illustrate the progress of this algorithm with the following example. 

_____________________________________________________ 

Example 1:  A polytope with 5 constraints and 2 nonnegative variables 
  

 1.5 x - y ≤ 8 

 0.2 x + y ≤ 8.4 

 - 5 x - y ≤ -10 

 - 4 x + y ≤ 1 

 0.5 x - y ≤ 2 

     x, y ≥ 0 

 
(10) 

_____________________________________________________ 

Let us use three starting points, i.e. (2, 7.5), (3, 0.25) and (9, 6), and three values of α, i.e. 1.0, 0.5 

and 0.2. Figure 1 shows the progress of this algorithm for the three starting points, and for the three 

values of α. All the lines converge to the BI center. Table 1 shows the results of iterative calculations 

for all these cases. It is seen that the convergence is fast for α = 1, while lower values of α require 

more iterations for a close approach to the BI center. It is also seen from Figure 1 that for lower α, 

the approach to the BI center is smoother. This algorithm involves the updating of the Si values at 

each step and involves extra calculations. However, its advantage lies in the fact that at any stage 

the calculated points remain far away from the polytope boundaries. 
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No. P1, init P2, init α 
No. of 

iter. for 
F=0.99 

No. of 
iter. for 
F=0.999 

1 2 7.5 1 3 4 

2 2 7.5 0.5 5 6 

3 2 7.5 0.2 12 16 

4 3 0.25 1 3 4 

5 3 0.25 0.5 6 8 

6 3 0.25 0.2 14 21 

7 9 6 1 4 4 

8 9 6 0.5 7 9 

9 9 6 0.2 16 23 

Table 1: Convergence to the BI center for Example 1 (CS algorithm) 

 

5. Simultaneous coordinate search algorithm (SCS) 

The idea here is to go from a given interior point P to a new point Q using Equation (7), changing all 

the coordinates simultaneously, and repeat this step iteratively till we approach the BI center 

sufficiently closely.  

One step of this algorithm consists of going from the current point P to a new point Q , using 

 𝑄𝑗 = 𝑃𝑗 + 𝛼 𝑑𝑗        𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 (11) 

The multiplying factor α has been used for flexibility, as before. The details of the SCS algorithm are 

given below: 

 

Figure 1: Convergence to the BI center for Example 1 (CS algorithm) 
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_____________________________________________________ 

SCS algorithm:  
Given : iter = 0, and Piter = P0 (an interior point) 
     Do while F(Piter) < a critical value (such as 0.99) 
           Qj = Piter,j + α dj    for j = 1 to n 
           iter = iter+1 
           Piter (j) = Q(j)       for j = 1 to n 
     End Do 
Piter is the BI center of the polytope 

 
 

_____________________________________________________ 

 

 
                      

No. P1, init P2, init α 
No. of 

iter. for 
F=0.99 

No. of 
iter. for 
F=0.999 

1 2 7.5 1 3 3 

2 2 7.5 0.5 5 6 

3 2 7.5 0.2 12 17 

4 3 0.25 1 3 3 

5 3 0.25 0.5 6 8 

6 3 0.25 0.2 13 20 

7 9 6 1 4 4 

8 9 6 0.5 7 9 

9 9 6 0.2 16 23 

Table 2. Convergence to the BI center for Ex. 1 (SCS algorithm) 
 

                     

Figure 2: Convergence to the BI center for Example 1 (SCS algorithm) 
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The performance of this algorithm for example 1 is shown in Figure 2 and Table 2. The performance 

of this algorithm is almost the same as that of the CS algorithm. This algorithm does not involve any 

updating of the Si values at each step and therefore, involves less calculations. However, at times, 

the calculated points may be close to the polytope boundaries. 

6. Matrix Inversion algorithm (MI) 

Let us first characterise the BI center by assuming that point P is the BI center, as shown in Figure 3. 

Let Uk be the index of the first constraint hit by a line drawn through P, in the +xk direction, and let Lk 

be the index of the first constraint hit by a line drawn through P, in the -xk direction. Let d+k and d-k 

be the corresponding distances. Since P is the BI center, it bisects the line, and d+k and d-k are equal 

in magnitude. Using equations (3) and (4), this condition can be written as 

 (𝑏𝑈𝑘
− ∑ 𝐴𝑈𝑘𝑗𝑃𝑗

𝑛
𝑗=1  )

𝐴𝑈𝑘𝑘
+

(𝑏𝐿𝑘
− ∑ 𝐴𝐿𝑘𝑗𝑃𝑗

𝑛
𝑗=1  )

𝐴𝐿𝑘𝑘
= 0 (12) 

 

This equation is valid for all k = 1 to n. Algebraic manipulation gives 

 
∑(𝐴𝐿𝑘𝑘𝐴𝑈𝑘𝑗 + 𝐴𝑈𝑘𝑘𝐴𝐿𝑘𝑗)

𝑛

𝑗=1

𝑃𝑗 = (𝐴𝐿𝑘𝑘𝑏𝑈𝑘
+ 𝐴𝑈𝑘𝑘𝑏𝐿𝑘

)    𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑛 (13) 

 

Equation (13) is a set of (n x n) linear equations which can be solved for Pj, j = 1 to n, using matrix 

inversion or any iterative method. It should be noted here that the coefficients appearing in 

Equation (13) correspond to intersections of lines drawn through the BI center, which is not known 

beforehand! One way around this difficulty is to start with an initial interior point, P0, and draw lines 

through this point to determine the set of constraints intersected, ψ0 = [(Uk, Lk), k = 1 to n)]. Now 

generate the coefficients appearing in Equation (13), calculate P1 by matrix inversion or any iterative 

method, and get the corresponding set ψ1. If ψ0 and ψ1 are identical, then P1 is the BI center. If ψ0 

and ψ1 are different, then calculate P2 and ψ2. We can continue this until ψiter-1 and ψiter are identical, 

to get Piter as the BI center. This algorithm is described below. 

_____________________________________________________ 

MI algorithm:  
Given : iter = 0, Piter = P0 (an interior point) 
Calculate the set of intersections ψ0 = [(Uk, Lk), k = 1 to n)] using Eqns (4) to 
(6) 
     Do  
          Iter = iter + 1 
          Calculate coefficients in Equation (12) using ψiter-1  
          Calculate point Q by solving Equation (12) 
               If Q is a feasible point then 
                    Piter = Q 
              else 
                    Calculate Q1 and Q2 as the two intersections of line QPiter-1 and the 
                            polytope boundary 
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                    Piter = the midpoint of Q1 and Q2 
               End If 
          Calculate the set of intersections ψiter from Piter  
               If ψiter and ψiter-1 are identical then 
                    exit do 
               End If 
     End do 
Piter is the BI center of the polytope 

_____________________________________________________ 

The performance of this algorithm for example 1 is shown in Figure 3. For this example, the BI center 

is reached in just a few steps, starting from any of the five different points considered. 

 

If the MI algorithm is started from a point away from the BI center, i.e. close to the polytope 

boundary, then the next calculated point may be an infeasible point. This possibility has been 

incorporated in the MI algorithm description. Even then, this algorithm may not converge to the BI 

center in some rare cases.  

7. A combined approach to the calculation of the BI center 

It has been stated earlier that the CS and SCS algorithms converge to the BI center iteratively. 

However, as they approach the BI center, further approach becomes slower and slower as the steps 

become shorter. On the other hand, the MI algorithm may give infeasible iterates when far away 

from the BI center but can get to the exact BI center quickly when it is not too far away from it. 

These two approaches can be combined to get to the BI center quickly. 

Consider the polytope defined by Example 1, shown in Figure 4, which also shows the BI center. If 

two lines are drawn through the BI center, they intersect constraints (1, 2, 3, 5). A grey rectangle 

surrounding the BI center has also been shown in the same figure. If we take any point within the 

grey rectangle and draw two lines in the x and y direction, then they intersect the same set of 

constraints (1, 2, 3, 5). This implies that if we start from any point within the grey rectangle, and use 

Figure 3: Convergence to the BI center for Example 1 (MI algorithm) 
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the MI algorithm, then we reach the BI center in one step! This gives us a way of combining 

algorithms in a beneficial manner. We can start from any interior point, apply the CS or the SCS 

algorithm till we get an F value more than some critical value such as 0.99, and then apply the MI 

algorithm to get the BI center exactly. 

 

 
 

8. Some results with another example 

Let us consider a larger problem in four dimensions as given below. 

_____________________________________________________ 

Example 2:  A polytope with 5 constraints and 4 nonnegative variables 
  

       x1 + x2 - x3 + x4 ≤ 8 

       x1 + 0.5 x2 - x3  ≤ 3 

       0.5 x1 - 2 x2 + x3 ≤ 2 

   - x1 + 0.5 x2 – 0.5 x4 ≤ 3 

x1 + 3 x2 + 1.5 x3 + 2 x4 ≤ 25 

           x1, x2, x3, x4 ≥ 0 

 
(14) 

__________________________________________________ 

This example has five constraints defining the polytope, and in addition, all four variables are 

nonnegative, which is equivalent to four more constraints. 

CS algorithm: If we apply the CS algorithm to this polytope, starting from the arbitrary point (1, 2, 

2.5, 1.3) we approach the BI center iteratively. Figure 5 shows the approach of the x1 coordinate to 

the BI center for three values of α. Similar figures can be shown for other coordinates, but are not 

presented here, for the sake of brevity. Table 3 shows the approach to the BI center in terms of the 

number of iterations required for getting F of 0.99 and 0.999, for three values of α. It is seen that for 

Figure 4. Interior region which gives the BI center in one step 

(algorithm 3) 
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α = 1, the approach to the BI center is fast, but x1 oscillates to some extent. For lower values of α, 

the approach to the BI center is smoother, but takes a greater number of iterations. 

 

No. Α 
No. of iter. for 

F=0.99 
No. of iter. for 

F=0.999 

1 1 3 3 

2 0.5 5 9 

3 0.2 13 30 

Table 3: Iterations required for convergence for Example 2 (CS algorithm) 

 

SCS algorithm: If we apply the SCS algorithm to this polytope, starting from the same arbitrary point 

used in the CS algorithm, i.e. (1, 2, 2.5, 1.3), we approach the BI center iteratively. Figure 6 shows the 

approach of the x1 coordinate to the BI center for three values of α. Table 4 shows the approach to 

the BI center in terms of the number of iterations required for getting F of 0.99 and 0.999, for three 

values of α. It is seen that for α = 1, the approach to the BI center is fast, but x1 oscillates to some 

extent. For lower values of α, the approach to the BI center is smoother, but takes more iterations. It 

is also seen that the SCS algorithm is slower than the CS algorithm in approaching the BI center. 

Figure 5. Convergence of the x1 values (CS algorithm, three values of α) 
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No. Α 
No. of iter. for 

F=0.99 
No. of iter. for 

F=0.999 

1 1 7 10 

2 0.5 6 14 

3 0.2 15 34 

Table 4: Iterations required for convergence for Ex. 2 (SCS algorithm) 

 

MI algorithm: If we apply the MI algorithm to this polytope, starting from the same arbitrary point 

used in the CS and SCS algorithms, i.e. (1, 2, 2.5, 1.3), we approach the BI center in three steps as 

shown in Table 5.  

 

No. X1 X2 X3 X4 F value 

1 1 2 2.5 1.3 0.329 

2 2.394 2.773 3.175 2.381041 0.980 

3 2.667 2.889 3.778 2 1 

Table 5: Iterations required for convergence for Example 2 (MI algorithm) 
 

9. Some results with the combined approach 

Let us illustrate the combined approach using both the example problems. Since the CS and SCS 

algorithms are comparable, we use only the SCS algorithm for the initial approach to the BI center. 

Example 1: Let us first consider Example 1 with the SCS algorithm, and use α = 0.2 . Let us use the 

interior starting point (9, 6). Table 6 shows the progress of the algorithm with iterations, i.e. the 

point coordinates and the F value. It shows that we reach F value of 0.95, 0.99 and 0.999 after 12, 16 

Figure 6. Convergence of the x1 values (SCS algorithm, three values of α) 
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and 23 iterations respectively. It also shows that as we approach the BI center, further progress 

becomes slower. Let us now consider three cases as follows: 

 

Iter. No. X Y F value 

1 9.000 6.000 0.156 

2 8.258 6.010 0.398 

3 7.665 5.921 0.518 

4 7.183 5.773 0.610 

5 6.784 5.592 0.686 

6 6.448 5.396 0.747 

7 6.162 5.195 0.797 

8 5.914 4.997 0.842 

9 5.697 4.815 0.888 

10 5.516 4.663 0.921 

11 5.364 4.536 0.944 

12 5.236 4.429 0.960 

13 5.129 4.340 0.972 

14 5.039 4.266 0.980 

15 4.963 4.204 0.986 

16 4.900 4.152 0.990 

17 4.847 4.109 0.993 

18 4.803 4.072 0.995 

19 4.765 4.042 0.996 

20 4.734 4.016 0.997 

21 4.708 3.995 0.998 

22 4.686 3.977 0.998 

23 4.668 3.962 0.999 

Table 6. Approach to the BI center (Example 1, SCS algorithm, α = 0.2) 
 

Case 1: After 16 iterations, we reach the point (4.9, 4.152) and an F value of 0.99. If we now switch 

to the MI algorithm (which used matrix inversion) at this point, we get the BI center (4.573, 3.886) in 

just one step, with F = 1.  

Case 2: Let us switch to the MI algorithm earlier than in Case 1. After 12 iterations, we reach the 

point (5.236, 4.429) and an F value of just 0.96. If we now switch to the MI algorithm at this point, 

we still get the BI center in just one step, with F = 1. 

Case 3: Let us switch to the MI algorithm even earlier than in Case 2. After 9 iterations, we reach the 

point (5.697, 4.815) and an F value of just 0.888. If we now switch to the MI algorithm at this point, 

we still get the BI center in just one step, with F = 1 ! 
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Example 2: Let us now consider Example 2 with the SCS algorithm, and use α = 0.5 . Let us use the 

interior starting point (1, 2, 2.5, 1.3) as before. Table 7 shows the progress of the algorithm with 

iterations, i.e. the point coordinates and the F value. It shows that we reach F value of 0.95, 0.99 and 

0.999 after 3, 6 and 14 iterations respectively. It also shows that as we approach the BI center, 

further progress becomes slower. Let us now consider two cases as follows: 

 

Iter. No. X1 X2 X3 X4 F value 

1 1.000 2.000 2.500 1.300 0.328 

2 1.625 2.595 2.625 2.431 0.876 

3 1.894 2.692 2.907 2.671 0.952 

4 2.087 2.694 3.123 2.669 0.973 

5 2.237 2.692 3.251 2.602 0.984 

6 2.345 2.699 3.338 2.527 0.990 

7 2.419 2.712 3.399 2.457 0.993 

8 2.470 2.729 3.447 2.396 0.995 

9 2.505 2.747 3.488 2.344 0.996 

10 2.531 2.764 3.524 2.299 0.997 

11 2.551 2.779 3.556 2.260 0.998 

12 2.567 2.793 3.584 2.227 0.998 

13 2.580 2.805 3.608 2.198 0.998 

14 2.591 2.815 3.630 2.173 0.999 

Table 7. Approach to the BI center (Example 2, SCS algorithm, α = 0.5) 
 

Case 1: After 6 iterations, we reach the point (2.345, 2.699, 3.338, 2.527) and an F value of 0.99. If 

we now switch to the MI algorithm (which used matrix inversion) at this point, we get the BI center 

(2.667, 2.889, 3.778, 2) in just one step, with F = 1.  

Case 2: Let us switch to the MI algorithm earlier than in Case 1. After 3 iterations, we reach the point 

(1.894, 2.692, 2.907, 2.671) and an F value of just 0.952. If we now switch to the MI algorithm at this 

point, we still get the BI center in just one step, with F = 1 ! 

These examples and the various cases considered, clearly show that once we reach a reasonably 

high F value (0.99, 0.95 and 0.88 in the cases considered) we can get the BI center quickly using the 

MI algorithm which uses matrix inversion. 

10. Conclusions 

Three algorithms are proposed for calculating the BI center of a closed convex polytope. The CS 

algorithm involves sequential centering of all coordinates, while the SCS algorithm involves 

simultaneous centering of all coordinates. These algorithms were tested with two examples: the first 

one with five constraints and two variables, and the second one with five constraints and four 

variables. It was found that the computational characteristics of both these algorithms are 

comparable for the two small polytopes considered. The CS algorithm is faster than the SCS 

algorithm in its approach to the BI center, but involves some extra computations in each iteration 
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(for updating the Si values). It also has the advantage that iterates are never too close to the 

polytope boundary. For both these algorithms, it was found that a step size multiplier less than 1 

gives a smoother approach to the BI center, though it increases the number of iterations. It was also 

found that both these algorithms become progressively slower as they approach the BI center. 

The MI algorithm is based on the solution of simultaneous linear equations. It was shown to 

converge well to the BI center for both the examples. It was also shown to jump to the exact BI 

center in one step, if the starting point is close enough to the BI center. The region which 

corresponds to this single step solution to the BI center was shown graphically for one of the 

examples. It was found to generate infeasible iterates if it is started too close to the boundary. The 

algorithm described here includes a feature which deals with this possibility. 

A combined approach was tried which combines desirable characteristics of these algorithms. This 

approach is based on the use of the CS or SCS algorithm to get close to the BI center (as indicated by 

the F value of 0.9 or higher), and then use the MI algorithm to take the final steps to the exact BI 

center. The approach was shown to apply successfully for the two examples considered, where just 

one step of the MI algorithm was enough for reaching the BI center. Further work is needed for 

testing these algorithms with larger and more complex polytopes. 
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