Solution of a NxN System of Linear Algebraic Equations:
The AM2 Algorithm with a Low Time Complexity

Dr. V. S. Patwardhan?

September 2024

Abstract

The AM2 algorithm is a much-improved version of the AM algorithm presented earlier, which solves
a NxN system of linear algebraic equations using a novel idea. The main idea behind the AM
algorithm was to generate a second system of linear algebraic equations (having the same solution)
and take steepest descent steps alternately with the two systems of equations. In this paper, a very
useful modification of the algorithm is presented. This modification involves transforming the
coefficient matrix into a form which is equivalent to scaling all the variables in a special manner and
improve the condition number of the matrix suitably. This modified algorithm (termed as AM2 here)
was tested with (1) sample problems (with N < 1000) selected from the SuiteSparse collection of
highly sparse matrices (which are widely used as benchmark matrices for testing sparse matrix
algorithms and have been obtained from practical applications in several different areas such as
chemical process simulation, computational fluid dynamics and many others) and (2) randomly
generated dense problems for N up to 1000. The AM2 algorithm was found to solve the SuiteSparse
problems with an O[(Nnz)°®%] time complexity. It solved the randomly generated problems in O(N2%)
time. Comparison of the results obtained with the AM2 algorithm with those from the AM algorithm
clearly show the superiority of the AM2 algorithm. The AM2 algorithm is an iterative method which
terminates when residuals become less than a critical limit. A useful approach is suggested here to
determine how closely the solution point itself is approached.

Introduction

Solving a system of linear algebraic equations is a classical problem which has many practical
applications in areas such as engineering and science. Systems of large/huge size, involving millions
of equations and unknowns, arise in many diverse frontier areas including process simulation,
computational fluid dynamics, meshing, machine learning, computational chemistry, data mining,
bioinformatics etc. Efficient methods for solving such systems are therefore very important. Such
methods ideally should converge fast in a reasonably small number of iterations, make use of the
sparsity to the full extent, be able to deal with very ill-conditioned systems, have a low time
complexity, and be suitable for parallelisation. The AM2 algorithm developed here, has a low time
complexity and uses only matrix vector multiplications as the main computational effort. Thus, it can
make full use of sparsity, and can be easily parallelized. It is shown to handle quite ill-conditioned
problems successfully.

! Independent researcher. Formerly, Scientist G, National Chemical Laboratory, Pune 411008, India.
Email: vspatw@gmail.com , URL : https://www.vspatwardhan.com

mailto:vspatw@gmail.com
https://www.vspatwardhan.com/

The NxN system of linear equations can be written in a matrix form as Aox = bg, where Ag is a NxN
matrix, bo is an N-vector, and x is the solution vector to be determined. There are many direct
methods such as gaussian elimination and others which give an exact solution. However, it is often
sufficient to get an approximate solution in practical applications. Iterative methods essentially start
with a guess solution and improve it iteratively to get closer to the solution within acceptable
accuracy, i.e., to reduce residuals below some small critical value. A quick summary of these direct as
well as iterative methods can be found in standard books on linear algebra [for example, J. E. Gentle,
2007]. Iterative methods such as the steepest descent method and the conjugate gradient method
are used when the matrix is symmetric and positive definite. (It is well known that Aex = bo can be
put in the form Ax = b where A = Ag"Ag and b = Ag'bo. This gives a symmetric positive definite matrix
A for any Aop.) These are based on minimizing an appropriately defined quadratic function, using
optimization techniques. Details of these methods, including convergence analysis, are available in
standard books and reports [for example, J. R. Shewchuk, 1994]. Variations of the steepest descent
method are available which use the momentum concept to achieve faster convergence [Y. Nesterov,
1983; |. Sutskever et. Al., 2013].

The direct methods such as Gaussian elimination and derived methods are known to run in O(N3)
time. This computational complexity is closely related to the complexity of matrix multiplication. A
straightforward multiplication of two matrices also has a complexity of O(N3). There have been
steady efforts in reducing this complexity. It was shown by Strassen [1969] that the complexity can
be reduced to O(N%2) by rearranging the computations. It was reduced further to O(N%%7) by
Coppersmith and Winograd [1990]. Recently the complexity has been reduced further to O(N?3%?) by
Peng and Vempala [2021]. The question whether it can be reduced to the theoretical minimum of
O(N?) is still an open question. The AM2 algorithm presented here comes very close to this limit.

The AM2 algorithm presented here, is a modification of the earlier AM algorithm, made by using a
scaling technique. Before proceeding, it is useful to look at a summary of the AM algorithm itself.

A summary of the earlier AM algorithm (Augmented matrix algorithm)

The AM algorithm presented earlier [Patwardhan, 2022a], is based on three geometrical
observations, which are described below:

1. The first observation concerns the application of the steepest descent (SD) method for solving a
NxN system of linear equations. It is well known that the steepest descent method leads to a fast
approach to the solution (i.e., gives rapid reduction in residuals) in the first few steps and slows
down substantially in the following steps. There are two possible ways of avoiding this slow
down [Patwardhan, 2022b], i.e., random movement of the point between iterations, and
possible matrix transformations between iterations. It was shown that these approaches can
increase the speed of convergence of the steepest descent method by several orders of
magnitude.

2. The second observation concerns the geometry of the intersecting hyperplanes representing a
NxN system of linear equations. It has been shown earlier [Patwardhan, 2022c] that, in a large
dimensional space defined by a NxN system of linear equations with large N, several directions
exist which are almost orthogonal to all the rows of the matrix. Using one or more of these
directions to get a new equation (i.e., an augmented matrix), it is possible to change the
orientation of the ellipsoids of the sum of squares of the residuals significantly. This makes it

possible to use the SD method alternately with the original and the augmented matrices, to
achieve good convergence to the solution.

3. The third observation concerns the effect of adding a new, consistent equation to the system of
linear algebraic equations, i.e. Agx = bo repeatedly, on eigenvalues and eigenvectors of matrix A.
Let the new equation be vx = w. Let us assume that the solution s satisfies this equation, i.e., v's
=w. (v can be one of the directions mentioned in the second observation. The choice of w is
described later.) If this equation is added k times to the linear system Aox = bo, we get an
augmented system with a [(N+k) x N] coefficient matrix and a [(N+k) x 1] right hand side. This
system can be converted to a symmetric positive definite system Axx = b where

Ax= (AoTAo + kVVT) and bk = AoTbo + kwv (1)

For a large enough value of k, (i) v becomes the eigenvector of A corresponding to the largest
eigenvalue (which is equal to k itself), and (ii) both the systems, i.e., Aox = bg and Axx = by, have
the same solution s., provided v's = w. From a geometrical viewpoint, the SSs contours change
orientation as k increases, while the solution s remains unchanged. The parameter k is a
selectable parameter.

A key point is the appropriate choice of w. For a given vector v, the ideal choice of w is v's. However,
since s is not known at the beginning, the algorithm starts with a trial value of w, which gets updated
at each iteration.

A brief outline of the AM algorithm

We start with two points q: and g, which define a line that points approximately towards the
solution (the computation of q; and qz is described below.) The direction v given by q: and q; is used
to get a trial solution s, and a new equation passing through the trial solution, using w = v's. The
original system of equations, i.e. AgX = bg, is converted into two (NxN) symmetric positive definite
systems, i.e., Ax = b and Aix = b using equation (1). The point q; is adjusted by taking a fixed number
of SD steps with the two systems of equations alternately. The point gz is also adjusted similarly. The
adjusted points are used to get an improved direction v, a new trial solution solution, and a new
value of w. This is done iteratively till the SS..s at the approximate solution point becomes acceptably
low, or the iteration count exceeds a set maximum value.

The AM algorithm in detail

Given: N, Ao, and bo
Selectable parameters: k, n1, nz, mi, m;

Initial calculations
Calculate A (= Ag"Ao) and b (= Ao'bo)
Get two random vectors z; and z, with elements N(0,1)

Normalize z;and z;
Setpi=12;

v A W N -

Get q1,0 by applying m; steepest descent steps to p1, using Aand b

6 Calculate d = distance p1 - qi,0

7 Setp,=qio+mydz;

8 Get 2,0 by applying m; steepest descent steps to p,, using Aand b

9 Getvo=q1,0- G20

10 Get so, the point which minimizes SSres along the line vo drawn through qz,0
Iterative calculations

11 Seti=1

12 While Gres > Gres,crit , dO

13 Set Wi =Vi1'si1

14 Set Wa,i = Vit Q2,1

15 Calculate Ay = (Ao'Ao + kwv')

16 Calculate bk; = Ag'bo + kw v

17 Forj=1tonm

18 Adjust q1,i.1 by applying n2 SD steps with Ay and by

19 Adjust q1,i1 further by applying n; SD steps with A and b

20 Next j

21 Set q1,i= Q1,1

22 Calculate bk; = Ao'bo + kwa,v

23 Forj=1tonm

24 Adjust qz,i.1 by applying n, SD steps with Ay and by

25 Adjust q,i.1 further by applying n; SD steps with A and b

26 Next j

27 Set q2i= q2,i-1

28 Calculate vi= qg,i - qu,

29 Get sj, the point which minimizes SS.es along the line vi drawn through qy;;

30 i=i+1

31 End while

At the end of initial calculations (step 10) the AM algorithm comes up with qi,0, g2,0, Vo and so. These
are then improved iteratively through steps 11-31. Steps 13 and 14 are aimed at keeping ¢y, as an
anchor, away from the solution, while pushing qi, towards the solution, which makes the direction v;
more accurate as iterations proceed.

The AM algorithm was tested earlier with two sets of problems. (1) Forty problems were selected
from the SuiteSparse collection and solved using the AM algorithm. Twenty-seven of these were
solved satisfactorily. For the others, residuals did not get reduced below the critical value even after
50 iterations, and the solution was not approached closely. The matrices for these 40 problems were
very ill-conditioned, with the condition numbers covering a range of 130 to 2.31x10%%, The details of
these calculations are available [Patwardhan, 2022a]. (2) Randomly generated problems with a
problem size up to N = 1000, were solved satisfactorily and gave a very close approach to the
solution. The algorithm gave a time complexity of O(N%2).

The AM2 algorithm

The results obtained with the AM algorithm indicate that the performance can be improved if the
conditioning of the coefficient matrix can be improved. This can be achieved by transforming the Ao
matrix by using a pre-multiplier and a post-multiplier to get a transformed system of equations. The
original system Aox = bg can be written as A1y = b; where A; = alAoB, b1 = atbp and y = BXx, where a
and B are appropriately selected diagonal matrices. The matrix B essentially represents a diagonal
scaling of the x variables which changes the condition number of the coefficient matrix. If the system
A1y = b; can be solved for y, then we can recover x, the solution of the original system (i.e., Aox = by)
simply by using x = By. These equations are valid for any arbitrary choice of a and B.

Selection of a and B:

The easiest way to get rid of large numbers in the coefficient matrix is to normalize all rows of Ao,
which is equivalent to normalizing each equation in the system Aox = bo. Taking this further, is it
possible to simultaneously normalize the columns of Agas well?

Consider a matrix Asg whose entries are squares of corresponding entries of Ao, and therefore are
nonnegative. If Ag can be put in a form where all its rows as well as columns are normalized (i.e.,
their Euclidian norm is 1), then the corresponding Asq matrix would be double stochastic (i.e., each
row as well as each column would add up to 1). A simple iterative method to get the double
stochastic matrix is to alternately rescale all rows and all columns of Asq to sum to 1. This is the well-
known Sinkhorn and Knopp algorithm [Sinkhorn and Knopp, 1967]. This algorithm can be shown to
converge to the double stochastic form, if the matrix has support, i.e., it contains at least one
diagonal with only positive elements. This condition is satisfied if the matrix is invertible. The final
double stochastic form can be transformed to the final form of Agjust by taking square roots of
corresponding entries in Asq, keeping the sign of each entry as in the original Ao, Alternately, row and
column normalization (using the Euclidian norm) can be applied to the original Ao repeatedly to get
the final form. It may be noted that converting Asq to the double stochastic form is computationally
more efficient than converting Ao by repeated normalization of rows and columns, as the latter
involves squaring entries at each iteration. However, this choice is not important, because
calculations show that the time taken for double normalization is negligible compared to the total
time taken by the AM2 algorithm.

Double normalisation (i.e., normalisation of rows as well as columns) is an idea that is used widely in
data analysis in various fields (for example, see Olshen and Rajaratnam [2010]). Many mathematical
libraries provide standard callable procedures for double normalization using different norms such
as maximum entry, sum of absolute values etc, as well as the Euclidian norm.

It is obvious that normalizing matrix rows can be represented as pre-multiplication by a diagonal
matrix, while normalizing matrix columns can be represented as post-multiplication by another
diagonal matrix. While normalizing rows and columns repeatedly, these diagonal matrices can be
collected at each step, and can be combined to get a and B. (The details of these calculations are
described in Appendix 1.) Let us now assume that a, B, A; and b1 have been calculated from Agand
bo. At this point, the AM algorithm described above can be applied to the system Ay = b; to get the
solution y, and then the solution of the original system, Aox = bg, can be calculated using x = By.

The AM2 algorithm thus involves (1) normalization of the rows as well as columns of the Agmatrix
and (2) subsequent application of the AM algorithm presented earlier. The following sections
describe the numerical results obtained with the AM2 algorithm, using two different sets of
problems: (1) problems selected from the SuiteSparse collection of matrices, and (2) randomly
generated test problems. The results are also compared with the results of the AM algorithm (which
does not involve double normalization).

Results using problems from the SuiteSparse collection

Huge matrices that arise in practical applications in areas such as optimization, chemical process
simulation, structural engineering, computational fluid dynamics etc. are highly sparse, and often
have a very high condition number, which can make computations very time consuming.

The SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Matrix
Collection), is a large and actively growing set of sparse matrices that arise in real applications
[Davies and Hu, 2011]. The Collection is widely used for the development and performance
evaluation of sparse matrix algorithms. It allows for robust and repeatable experiments, since the
matrices are from real life applications, and are publicly available in many formats.

The AM2 algorithm described above, was used for solving a set of selected test problems from the
SuiteSparse collection. Computational results obtained are described below.

Problem selection:

Several problems were selected from the SuiteSparse collection, from the areas of chemical process
simulation and computational fluid dynamics, with N < 1000, to keep the computation time
reasonable. The condition numbers of the selected matrices, as reported in the SuiteSparse
collection, covered a wide range of 130 to 2.31x10%8. The problems selected are summarised in Table
1. Totally 40 problems were selected.

The problems listed in Table 1 cover a range of N up to 1000, and have a very high sparsity, as
indicated by the number of non-zero elements per row. The condition numbers cover a very wide
range of 130 to 2.31x10%. Most of the matrices did not have a right-hand side. To test the AM2
algorithm (which aims to solve linear equations), right-hand sides had to be generated. For this
purpose, a point was generated in a random direction, 100 units away from the origin, and was
taken as the solution s. The right-hand side was then generated using this solution, as bo = Aos. (The
solution s was used only for generating the right-hand side and was completely ignored while solving
the system of equations using the AM2 algorithm.) A point 10 units away from the origin, in a
random direction, was taken as the starting point for the AM2 algorithm.

Computational results:

The parameter values selected were k = 30, m1 = 20, m; = 10, n; = 40 and n; = 20. The maximum
number of iterations permitted was fixed at 50. The AM2 algorithm was applied to the system Aox =
bo. The progress of iterations was monitored by (1) calculating oges (i.e., the root mean square of the

Problem Non-zero Non-zero Condition

No. N elements
Name elements number

per row
1 | pores_1l.mtx 30 180 6 | 1.81E+06
2 | d_ss.mtx 53 149 2.8 | 6.14E+08
3 | impcol_b.mtx 59 312 5.2 | 1.64E+05
4 | west0067.mtx 67 294 4.3 | 1.30E+02
5 | steam3.mtx 80 928 11.6 | 4.99E+10
6 | d_dyn.mtx 87 238 2.7 | 7.42E+06
7 | d_dynl.mtx 87 238 2.7 | 7.43E+06
8 | tols90.mtx 90 1746 19.4 | 2.02E+04
9 | olm100.mtx 100 396 3.9 | 1.53E+04
10 | tub100.mtx 100 396 3.9 | 1.33E+04
11 | Ins_131.mtx 131 536 4 | 1.28E+15
12 | Insp_131.mtx 131 536 4 | 1.28E+15
13 | west0132.mtx 132 414 3.1 | 4.21E+11
14 | impcol_c.mtx 137 411 3| 1.77E+04
15 | west0156.mtx 156 371 2.3 | 2.31E+18
16 | west0167.mtx 167 507 3 | 4.79E+10
17 | bwm200.mtx 200 796 3.9 | 2.41E+03
18 | rdb200.mtx 200 1120 5.6 | 3.45E+02
19 | rdb200l.mtx 200 1120 5.6 | 1.33E+02
20 | impcol_a.mtx 207 572 2.7 | 1.35E+08
21 | exl.mtx 216 4352 20.1 | 3.30E+04
22 | impcol_e.mtx 225 1308 5.8 | 7.10E+06
23 | saylrl.mtx 238 1128 4.7 | 7.78E+08
24 | steaml.mtx 240 3762 15.6 | 2.83E+07
25 | tols340.mtx 340 2196 6.4 | 2.03E+05
26 | poisson2D.mtx 367 2417 6.5 | 1.33E+02
27 | impcol_d.mtx 425 1339 3.1 | 2.06E+03
28 | ex2.mtx 441 13640 30.9 | 1.03E+10
29 | rdb450.mtx 450 2580 5.7 | 6.85E+02
30 | rdb450l.mtx 450 2580 5.7 | 2.10E+02
31 | olm500.mtx 500 1996 3.9 | 3.73E+05
32 | pores_3.mtx 532 3474 6.5 | 5.61E+05
33 | steam2.mtx 600 13760 229 | 3.78E+06
34 | ex21.mtx 656 19144 29.1 | 5.68E+08
35 | rdb800l.mtx 800 4640 5.8 | 3.23E+02
36 | ex22.mtx 839 22715 27 | 3.28E+04
37 | ex25.mtx 848 24612 29 | 5.11E+07
38 | orsirr_2.mtx 886 5970 6.7 | 6.33E+04
39 | DKO1R.mtx 903 11766 13 | 5.89E+07
40 | rdb968.mtx 968 5632 5.8 | 3.78E+02

Table 1. Problems selected from the SuiteSparse collection

residuals, R; for the current y), and (2) calculating current x from current y to get the deviations (xi-
si). The iterations were terminated when ores became smaller than a critical value (which was
selected as 0.0001). The final point was characterised by calculating o« (i.e., the root mean square
value of the deviations (xi- si) for the system Aox = b, fori =1 to N).

No. Problem name N Nnz Iter Run time, ORes Onx
reqd. reduced

1 | pores_l.mtx 30 180 5 0.108 2.85E-09 | 6.73E-07

2 | d_ss.mtx 53 149 5 0.115 3.22E-08 | 2.24E-07

3 | impcol_b.mtx 59 312 3 0.231 3.98E-13 | 7.52E-11

4 | west0067.mtx 67 294 3 0.114 9.40E-07 | 1.45E-05

5 | steam3.mtx 80 928 1 0.081 1.01E-09 | 9.57E-07

6 | d_dyn.mtx 87 238 1 0.030 | 7.45E-11 | 1.22E-10

7 | d_dynl.mtx 87 238 2 0.057 2.03E-13 | 1.32E-12

8 | tols90.mtx 90 1746 1 0.122 6.33E-15 | 1.82E-14

9 | 0olm100.mtx 100 396 5 0.191 8.10E-07 | 1.79E-04
10 | tub100.mtx 100 396 40 1.552 8.55E-07 | 8.61E-04
11 | Ins_131.mtx 131 536 3 0.159 6.54E-08 | 1.92E-05
12 | Insp_131.mtx 131 536 1 0.052 8.03E-07 | 7.43E-05
13 | west0132.mtx 132 414 5 0.214 1.16E-09 | 3.39E-08
14 | impcol_c.mtx 137 411 2 0.086 3.34E-08 | 2.69E-07
15 | west0156.mtx 156 371 2 0.088 1.02E-07 | 3.80E-01
16 | west0167.mtx 167 507 4 0.209 2.24E-10 | 3.42E-09
17 | bwm?200.mtx 200 796 28 2.067 9.67E-07 | 8.09E-04
18 | rdb200.mtx 200 1120 4 0.370 6.47E-07 | 9.35E-06
19 | rdb200l.mtx 200 1120 3 0.278 7.73E-08 | 6.77E-07
20 | impcol_a.mtx 207 572 4 0.252 4,58E-08 | 6.49E-06
21 | exl.mtx 216 4352 1 0.295 7.90E-13 | 9.25E-11
22 | impcol_e.mtx 225 1308 1 0.109 8.04E-11 | 2.35E-09
23 | saylrl.mtx 238 1128 50 4.978 1.39E-04 | 4.14E+01
24 | steaml.mtx 240 3762 1 0.257 6.59E-15 | 1.22E-11
25 | tols340.mtx 340 2196 1 0.178 9.70E-15 | 1.14E-14
26 | poisson2D.mtx 367 2417 4 0.770 1.27E-08 | 2.69E-07
27 | impcol_d.mtx 425 1339 5 0.680 2.65E-09 | 9.56E-08
28 | ex2.mtx 441 13640 5 4.249 1.23E-09 | 6.08E-08
29 | rdb450.mtx 450 2580 8 1.694 8.70E-07 | 1.73E-04
30 | rdb450l.mtx 450 2580 4 0.846 5.57E-08 | 3.24E-06
31 | olm500.mtx 500 1996 50 9.186 5.26E-04 | 4.38E+00
32 | pores_3.mtx 532 3474 50 13.823 1.79E-04 | 1.69E+01
33 | steam2.mtx 600 13760 1 0.882 2.72E-15 | 3.29E-11
34 | ex21.mtx 656 19144 4 4,788 6.14E-08 | 1.47E-03
35 | rdb800l.mtx 800 4640 5 1.880 1.41E-07 | 1.52E-05
36 | ex22.mtx 839 22715 4 5.696 8.01E-08 | 2.59E-06
37 | ex25.mtx 848 24612 5 9.896 8.23E-08 | 1.62E-04
38 | orsirr_2.mtx 886 5970 50 29.409 6.85E-05 | 2.92E-01
39 | DKO1R.mtx 903 11766 6 4.898 3.68E-08 | 2.55E-04
40 | rdb968.mtx 968 5632 5 2.474 6.09E-07 | 7.58E-05

Table 2. Computational results with the AM?2 algorithm for problems selected from
The SuiteSparse collection (N <= 1000)

The run time, in seconds, of any algorithm depends not only on the algorithm itself, but other factors
such as the computer speed, the coding language, the development environment used etc. In order
to eliminate the effect of these external factors, a reference run time T..f was obtained for a
standard procedure, and the run times obtained for different problems were normalised by dividing
by T.ef to get a run time ratio. The standard procedure selected was the solution of a dense random

10.00 ®

y = 0.001x0-8339 0y ©°
°
° ¢ o ¢
1.00
3 ° . °
B
()] .
£ e L4
= Y Qo . o
< ". °
S .
e o O °
0.10 % oo o
L °
°
0.01
100 1000 10000 100000
Nnz

Figure 1. Run time ratio vs. Nnz for different SuiteSparse problems.

1.0E+03
1.0E+02
1.0E+01
1.0E+00
1.0E-01
1.0E-02
1.0E-03
1.0E-04
1.0E-05
1.0E-06
1.0E-07
1.0E-08
1.0E-09
1.0E-10
1.0E-11
1.0E-12
1.0E-13 o

1.0E-13 1.0E-11 1.0E-09 1.0E-07 1.0E-05 1.0E-03 1.0E-01 1.0E+01 1.0E+03 1.0E+05

dSoin, AM

dSoln, AM2

Figure 2. A comparison of approach to the solution with/without double normalization

square matrix of dimension 1000 by using Gaussian elimination. This way, the run time ratios
reported here should be reproducible on other computer systems.

Table 2 shows the computational results obtained with the AM2 algorithm for the problems listed in
Table 1. It is seen that 36 of the 40 problems gave convergence in less than 50 iterations, and thus
were solved very well by the AM2 algorithm. For these problems, the AM2 algorithm rapidly
approaches the solution, often in just a few iterations. The average deviation in solution coordinates
is less than 0.01, and the average number of iterations required is 5. For the 4 problems (problem
numbers 23, 31, 32 and 38 in Table 2) which are not solved within 50 iterations, the average
deviation in solution coordinates is 15.73. For these problems, the speed of approaching the solution
becomes too low after some point. It may be noted that the AM2 algorithm does not make use of
any explicit preconditioners. For these four problems, preconditioners may have to be used. The
reduced run time for the 36 problems is shown in Figure 1 against Nnz, the number of nonzero
elements. The time complexity is seen to be O(Nnz%#). It may be noted here that Nnz is used instead
of N, because the computation procedure uses sparse matrix routines, whose computation time is
related to Nnz, and not N. For dense matrices, Nnz = N2, while for sparse matrices, Nnz << N?, as
seen in Table 1.

It has been mentioned earlier that the AM2 algorithm consists of double normalization followed by
the AM algorithm. It is interesting to see the effect of the double normalization on the results. It may
be noted that dson, i.€., the distance between the approximate and the exact solutions, is equal to
oax(N)%°. Figure 2 shows dsoinam2 and dsoin am, i.€., the dson values for the AM2 and the AM algorithms
respectively, for the 36 SuiteSparse problems. The line represents equality of the two values. It is
seen that the AM2 algorithm approaches the solution much more closely than the AM algorithm.
This is the result of the double normalization.

It is interesting to see some results obtained during the double normalization of the Ag matrix. The
detailed procedure for double normalization is shown in Appendix 1. Table 3 shows a summary of
the elements of B matrices obtained for selected SuiteSparse problems. The elements of B vary
between 1.66x10° and 1.04x107, which is a very wide range. It has been mentioned earlier that the B
values represent scaling of the x-variables in the original problem. These B values indicate a very
strong scaling which is a result of the double normalization procedure. This is the reason for the
superior performance of the AM2 algorithm over the AM algorithm. The wide range of B values is
related to the very high condition numbers of the SuiteSparse problems. The average number of
iterations taken by the double normalization procedure is 25. These results are quite in contrast to
similar results presented later for randomly generated problems.

The test problems considered so far were those selected from the SuiteSparse collection. It is
interesting to examine similar results obtained for randomly generated problems involving gaussian
matrices.

Results using randomly generated test problems

Randomly generated test problems have certain properties arising out of the random procedure
used for generating these, and the computational results obtained may be different from those
presented above for the SuiteSparse problems. However, it is interesting to see the results obtained
with randomly generated problems.

10

Iter-

No. fName N Nnz B Max B Min B Ratio ations
1 | pores_1.mtx 30 180 | 4.17E+02 1.31E-01 | 3.15E-04 14
2 | d_ss.mtx 53 149 | 1.81E+01 9.71E-03 | 5.37E-04 26
3 | impcol_b.mtx 59 312 | 5.73E+01 1.92E-02 | 3.35E-04 43
4 | west0067.mtx 67 294 | 7.93E+00 4.56E-01 | 5.75E-02 11
5 | steam3.mtx 80 928 | 4.56E+03 2.83E-01 | 6.19E-05 19
6 | d_dyn.mtx 87 238 | 1.84E+01 1.21E-03 | 6.55E-05 38
7 | d_dynl.mtx 87 238 | 6.22E+01 8.25E-04 | 1.33E-05 47
8 | tols90.mtx 90 1746 | 3.49E+00 8.02E-01 | 2.30E-01 2
9 | 0lm100.mtx 100 396 | 1.92E+00 6.23E-01 | 3.24E-01 7

10 | tub100.mtx 100 396 | 1.24E+00 8.72E-01 | 7.02E-01 1
11 | Ins_131.mtx 131 536 | 3.77E+02 1.19E-03 | 3.16E-06 47
12 | Insp_131.mtx 131 536 | 3.77E+02 1.19E-03 | 3.16E-06 47
13 | west0132.mtx 132 414 | 3.24E+03 1.45E-04 | 4.49E-08 74
14 | impcol_c.mtx 137 411 | 2.24E+01 4.77E-02 | 2.13E-03 46
15 | west0156.mtx 156 371 | 1.04E+07 1.30E-03 | 1.26E-10 68
16 | west0167.mtx 167 507 | 3.67E+03 2.82E-04 | 7.67E-08 62
17 | bwm200.mtx 200 796 | 1.02E+00 9.83E-01 | 9.67E-01 1
18 | rdb200.mtx 200 1120 | 1.45E+00 7.78E-01 | 5.36E-01 4
19 | rdb200l.mtx 200 1120 | 1.27E+00 8.50E-01 | 6.67E-01 1
20 | impcol_a.mtx 207 572 | 1.01E+04 5.61E-04 | 5.53E-08 81
21 | exl.mtx 216 4352 | 6.41E+01 4.29E-01 | 6.69E-03 11
22 | impcol_e.mtx 225 1308 | 4.85E+03 9.03E-03 | 1.86E-06 69
23 | saylrl.mtx 238 1128 | 3.17E+00 4.60E-01 | 1.45E-01 12
24 | steaml.mtx 240 3762 | 1.80E+03 4.77E-01 | 2.65E-04 3
25 | tols340.mtx 340 2196 | 2.67E+00 8.65E-01 | 3.24E-01 1
26 | poisson2D.mtx 367 2417 | 1.01E+00 9.70E-01 | 9.57E-01 1
27 | impcol_d.mtx 425 1339 | 1.23E+01 2.55E-02 | 2.08E-03 51
28 | ex2.mtx 441 13640 | 9.85E+06 1.66E-05 | 1.68E-12 100
29 | rdb450.mtx 450 2580 | 1.17E+00 8.82E-01 | 7.57E-01 7
30 | rdb450l.mtx 450 2580 | 1.95E+00 7.50E-01 | 3.84E-01 2
31 | olm500.mtx 500 1996 | 1.89E+00 6.29E-01 | 3.32E-01 7
32 | pores_3.mtx 532 3474 | 5.91E+01 1.37E-01 | 2.31E-03 18
33 | steam2.mtx 600 13760 | 4.37E+03 3.09E-01 | 7.06E-05 18
34 | ex21.mtx 656 19144 | 5.55E+02 4.23E-02 | 7.62E-05 13
35 | rdb800l.mtx 800 4640 | 1.52E+00 7.69E-01 | 5.05E-01 4
36 | ex22.mtx 839 22715 | 2.71E+01 2.44E-01 | 8.99E-03 6
37 | ex25.mtx 848 24612 | 1.42E+03 9.48E-02 | 6.67E-05 9
38 | orsirr_2.mtx 886 5970 | 1.28E+00 8.57E-01 | 6.70E-01 3
39 | DKO1R.mtx 903 11766 | 6.19E+03 6.35E-02 | 1.02E-05 18
40 | rdb968.mtx 968 5632 | 1.40E+00 7.86E-01 | 5.60E-01 5

Table 3. A summary of B values for SuiteSparse matrices (N upto 1000)

Problem generation:

Random problems were generated such that (1) the solution point s was at a fixed distance from the

origin, but in a random direction, (2) the entries in the coefficient matrix Ao were generated as

11

No. N Ores O Run t_ime iterat.ions
ratio required

1 10 1.1E-05 3.41E-05 0.004038 1.0
2 14 6.07E-06 8.6E-05 0.007279 1.6
3 20 1.66E-05 0.000263 0.013062 1.8
4 32 4.31E-05 0.001187 0.032457 2.8
5 50 1.61E-05 0.00031 0.057883 2.6
6 70 4.96E-05 0.091657 0.089442 2.2
7 100 2.25E-05 0.001454 0.214981 2.8
8 140 5.45E-05 0.011221 0.608348 4.0
9 200 6.72E-05 0.024496 1.401912 4.8
10 320 7.07E-05 0.023607 2.646428 3.2
11 500 7.68E-05 0.011599 10.9888 5.0
12 700 8.82E-05 0.018434 23.82379 5.2
13 1000 8.28E-05 0.018607 58.41226 6.2

Table 4. Computational results obtained for randomly generated
Problems, N = 10-1000 (average of 5 problems for each N)

N(0,1), and then each row of Ap was normalized. The by vector was generated as by = Ags. The
solution point s was used only for generating the right-hand side and was never used while solving
the resulting system of equations (i.e., Aox = bo) using the AM2 algorithm. The details of this
procedure were described earlier [Patwardhan, 2022c]. N was varied from 10 to 1000 using 13
values of N which were almost uniformly spaced on a logarithmic scale.

Computational results:

The parameter values selected were k =4, m; =20, m; =5, n; = 10 and n; = 20. The AM2 algorithm
was applied to the system Aox = bo. The origin was taken as the starting point. During the iterative
calculations, the known solution point was used only for characterising the successive iterates as
stated above and was completely ignored in the solution process. The algorithm was tested for N =
10 to 1000. For each N, five different problems were generated independently. The running time
refers only to the time taken for calculating the solution, and excludes the time taken for reading or
generating the problem data.

The computational results obtained with these randomly generated problems are shown in Table 4.
Figure 3 shows a log-log plot of run time ratio vs. problem size N. Figure 4 shows a similar plot of the
number of iterations required vs. problem size N. Table 5 shows results obtained during double
normalization.

It is seen from Table 4 that all the problems were solved successfully, with the final ores less than
0.0001. The oaxvalues increase somewhat with N, but even for N = 1000, all coordinates of s get
calculated within about 0.02 or so. It also shows that as N goes from 10 to 1000, the number of
iterations increase only from 1 to 6.2. In other words, for a 100-fold increase in N, the number of
iterations increases only 6 times or so. Figure 3 shows that the time complexity of the AM2

12

100

°
y = 2.0E-05 x2:0766 o
10 [
e
o
= 1 4
© e
£
b= . ®
S 0.1 e
o e)
Lo
L
0.01
Q..
..-.. o*
0.001
10 100 1000
Problem size, N
Figure 3. Run time ratio vs. N for randomly generated problems
10
y = 0.653 x0-3275
...... ®
....... ®
%] ® .
C | e
S o ..
=]
S e
g e °
-« e . ®
° [
o | e
z | e °
e
.
1@
10 100 1000

Problem size, N

Figure 4. No. of iterations required for different problem sizes (N)

13

. . Iter-

No. N B Max B Min B Ratio ations
1 10 1.69 0.70 0.43 2.6
2 14 1.39 0.75 0.55 2.2
3 20 1.41 0.79 0.59 2.0
4 32 1.40 0.81 0.58 2.0
5 50 1.36 0.80 0.59 1.8
6 70 1.21 0.84 0.70 1.4
7 100 1.21 0.85 0.70 1.0
8 140 1.19 0.88 0.74 1.0
9 200 1.15 0.87 0.76 1.0
10 320 1.11 0.88 0.80 1.0
11 500 1.10 0.91 0.83 1.0
12 700 1.09 0.92 0.85 1.0
13 1000 1.08 0.93 0.86 1.0

Table 5. A summary of B for randomly generated problems,
N = 10-1000 (Average of 5 problems for each N)

algorithm is about O(N2). This is better than computational complexities reported so far and is
surprisingly close to the theoretical limit of 2.0. Figure 4 shows that the number of iterations
increase very slowly with N, and show a dependence of O(N°?2) or so.

It is interesting to see some results obtained during the double normalization of the Ag matrix. The
detailed procedure for double normalization is shown in Appendix 1. Table 5 shows a summary of
the elements of B matrices obtained for randomly generated problems. The elements of B vary
between 0.7 and 1.69, which is a narrow range close to 1 (in contrast to the very large range
presented above for the SuiteSparse problems). It appears that since the matrices themselves are
generated at random, it does not take much correction to achieve normalization of both rows and
columns, and it takes only a few iterations to achieve it. This is in contrast with the large number of
iterations required for SuiteSparse matrices, as presented above.

Discussion

Problems from the SuiteSparse collection:

The condition numbers for the 40 problems selected from the SuiteSparse collection were in the
very wide range of 130 to 2.31x10%8. These represent very elongated ellipsoids as the quadratic SSres
surfaces. The AM2 algorithm essentially takes steepest descent steps alternately with the original
and the augmented matrix systems. It approaches the solution closely in most of the cases and
solves 36 of the 40 problems very well. However, for the remaining 4 problemes, it gets stuck at a
point quite far away from the solution. The average ds.in for the 36 problems is 0.13, while that for
the 4 problems is 283.5! (Out of the 36 problems, problem no. 15 has dsoin = 4.75, which is high
despite the good convergence in two steps. If this point is left out, the average dson for the 35
problems is 0.0023, which is much better.) This can be interpreted in terms of the geometry of the N
hyperplanes. The 4 problems give approximate solution points which have small residual values from

14

dSoIn, dSoIn;
No. | Problem Name N RHS=0 RHS=bo

1 | pores_1.mtx 30 1.09E-05 3.69E-06

2 | d_ss.mtx 53 4.38E-06 1.63E-06

3 | impcol_b.mtx 59 1.57E-05 5.77E-10

4 | west0067.mtx 67 3.58E-05 1.19E-04

5 | steam3.mtx 80 1.63E-05 8.56E-06

6 | d_dyn.mtx 87 1.15E-13 1.14E-09

7 | d_dynl.mtx 87 5.25E-06 1.23E-11

8 | tols90.mtx 90 1.17E-26 1.72E-13

9 | olm100.mtx 100 2.46E-05 1.79E-03
10 | tub100.mtx 100 5.83E-03 8.61E-03
11 | Ins_131.mtx 131 2.03E-04 2.20E-04
12 | Insp_131.mtx 131 4.82E-07 8.50E-04
13 | west0132.mtx 132 7.87E-06 3.89E-07
14 | impcol_c.mtx 137 1.31E-05 3.15E-06
15 | west0156.mtx 156 1.09E+01 4.75E+00
16 | west0167.mtx 167 3.68E-06 4.42E-08
17 | bwm200.mtx 200 7.73E-03 1.14E-02
18 | rdb200.mtx 200 3.05E-04 1.32E-04
19 | rdb200l.mtx 200 5.89E-04 9.58E-06
20 | impcol_a.mtx 207 1.50E-06 9.34E-05
21 | exl.mtx 216 2.21E-11 1.36E-09
22 | impcol_e.mtx 225 3.14E-10 3.52E-08
23 | saylrl.mtx 238 6.49E+01 6.38E+02
24 | steaml.mtx 240 5.07E-22 1.89E-10
25 | tols340.mtx 340 2.79E-22 2.11E-13
26 | poisson2D.mtx 367 6.30E-06 5.16E-06
27 | impcol_d.mtx 425 2.00E-06 1.97E-06
28 | ex2.mtx 441 1.20E-05 1.28E-06
29 | rdb450.mtx 450 1.24E-03 3.66E-03
30 | rdb450l.mtx 450 1.97E-05 6.87E-05
31 | olm500.mtx 500 4.14E+01 9.79E+01
32 | pores_3.mtx 532 5.55E+01 3.89E+02
33 | steam2.mtx 600 1.31E-59 8.05E-10
34 | ex21.mtx 656 5.85E-03 3.78E-02
35 | rdb800l.mtx 800 1.45E-04 4.29E-04
36 | ex22.mtx 839 2.73E-05 7.49E-05
37 | ex25.mtx 848 2.66E-05 4.73E-03
38 | orsirr_2.mtx 886 2.67E-01 8.68E+00
39 | DKO1R.mtx 903 2.25E-02 7.67E-03
40 | rdb968.mtx 968 3.08E-03 2.36E-03

Table 6. dsoin With the AM?2 algorithm, with original b,
and with bg =0

the N equations, even though they are far away from the exact solution. This means the cone made
by the hyperplanes (with its apex at s) which contains the approximate solution point is extremely
sharp. This is a geometrical characteristic of the N hyperplanes which prevents good convergence.

15

1.0E+03 [
°

® o

1.0E+00
2 s ~3¢
9 1.06-03 °
oc ® “
o °
S
2 1.0E-06 “
= ° °
3
£ 1.0E-09 o o .
o °
[72]
© °

1.0E-12

° °
1.0E-15

1.0E-28 1.0E-24 1.0E-20 1.0E-16 1.0E-12 1.0E-08 1.0E-04 1.0E+00 1.0E+04
dSoln with AM2, RHS=0

Figure 5. dsoin With the AM2 algorithm for SuiteSparse problems, with RHS = bg, and with RHS =0

This brings us to an important question. In this study, we have characterised the final solution point
in terms of the residuals, as well as in terms of its distance from the exact solution. However, when
we solve a new practical problem with the AM2 algorithm, we will get the approximate solution
based on the reduction of ores below a critical value. However, the exact solution will be unknown! In
such a situation, it is possible to get some idea about dsin? It has been argued that the ease (or
otherwise) of convergence of the AM2 algorithm is related to the geometrical structure of the
system of equations (i.e., the N hyperplanes) itself. If we change the right-hand side, i.e., be in the
system of equations Agx = bo, without changing Ao, then the geometrical characteristics of the
hyperplanes would remain unchanged. Changing bg is equivalent to a translation of the hyperplanes
to a new position, without changing their orientations. This changes the solution point, but the
convergence behaviour of the AM2 algorithm remains unchanged. Let us change the right-hand side
to zero, and consider the homogeneous system Aex = 0, where 0 is a vector of zeros. This system has
the origin itself as the solution, i.e., s = 0. Solving this system with the AM2 algorithm will give us the
approximate solution (obtained by reducing ores to a value smaller than a critical value, subject to
the maximum limit on the number of iterations). Let dsoim0 be the distance between the approximate
and the exact solution for this homogeneous system. Now we can calculate dsoino since we know s!
All the 40 SuiteSparse problems selected were solved using this approach, and the dsomoVvalues
obtained are shown in Table 6 along with the dsoin values obtained for the original problems. Figure 5
shows these values graphically.

It is seen from figure 5 that the dsoin and dsoino Vary monotonically. The five points inside the dashed
ellipse show that when the dsoino is high, the dsoi values are also high (i.e., 0.3 to 1000). On the other
hand, for all the other points, both ds.in,0 and dsoi values are small, less than 0.02 or so. This gives us
a way of estimating the accuracy of the approximate solution of a new problem (given by Ax = by)

16

obtained by using the AM2 algorithm. All we need to do is to solve the corresponding homogeneous
system, i.e., Aox = 0, to get the approximate solution with the AM2 algorithm, and get dsom,0, which is
just the distance between the approximate solution and the origin (which is the exact solution of the
homogeneous system). If dsoin,0 is small enough, then the approximate solution of Agx = bo will also
be close enough to s. However, if dsino is rather large, then the approximate solution of Aex = bo will
not be very accurate, and some other approach such as using a preconditioner needs to be
considered, if a greater accuracy is required. Many times, the solution obtained by reducing ores
below a critical value, may be quite acceptable in practice, though ds.in may not be too small.

Randomly generated problems:

The results presented in Table 4 and Figures 3 and 4 indicate that the AM2 algorithm successfully
solved all the 65 randomly generated problems with N < 1000. The final solution given by the AM2
algorithm was very close to the actual solution. The approach to the solution was fast, and the
algorithm took just a few iterations. The number of iterations was found to have only a weak
dependence on the problem size. The overall time complexity was found to be in O(N?%), which is
very attractive, and compares very closely with the theoretical minimum of O(N?). The number of
iterations shows a weak dependence on problem size, as seen in Figure 4. Table 5 shows that the B
values obtained in double normalization cover a rather narrow range of 0.70 to 1.69. (In contrast,
the B values for SuiteSparse problems cover a very wide range of 1.66x107° to 1.04x107.) It is obvious
that the matrices, generated at random, do not need much effort to achieve normalization of both
rows and columns, and it takes only a few iterations to achieve it. If these problems are solved with
the AM algorithm instead of the AM2 algorithm, the results are not significantly different, and are
not presented here, for the sake of brevity.

The computation time complexity for the SuiteSparse problems is O(Nnz®#), and that for randomly
generated dense problems is O(N*%). These are quite comparable since Nnz = N2 for dense matrices.

Conclusions

1. The AM2 algorithm presented here consists of double normalization of the coefficient matrix,
followed by the application of the AM algorithm presented earlier. The performance of the AM2
algorithm is shown to be much superior compared to that of the AM algorithm. Thus, double
normalization plays a very important role in the AM2 algorithm. Double normalization is shown
to be equivalent to scaling the variables. The AM2 algorithm solved most (36 out of 40) of the
problems selected from the SuiteSparse collection (up to N < 1000) successfully and gave a time
complexity of O(Nnz®%3), where Nnz is the number of nonzero elements. This low time
complexity makes the AM2 algorithm attractive for huge systems (N >> 1000).

2. The convergence criterion used by the AM2 algorithm consists of reduction of ores below a
critical value. A procedure is suggested here for estimating the distance between the exact and
approximate solutions, which is based on solving a homogeneous system.

3. The AM2 algorithm was also used for solving randomly generated problems for N = 10 to 1000.
All 65 problems were solved successfully, and the approximate solution was found to be very
close to the exact solution. The time complexity was found to be in O(N%%), which is almost the
same as the theoretical minimum of O(N?).

4. The scaling produced by the double normalization procedure was found to be severe for the
highly ill-conditioned SuiteSparse problems, while it was rather mild for the randomly generated

17

problems. Most of the computational effort of the AM2 algorithm is for matrix-vector

multiplications. Therefore, it can make full use of sparsity, and can be efficiently parallelized.

Nomenclature

A
Ao
A,
A
Asq
b
bo
b,
by
d
dsoln

dsoln,O
dsoln,AM
dsoln,AMZ
|

|

J

k

=Ao'Ao

the coefficient matrix in the system Aox = bo

= aAoB, the matrix obtained by double normalization of Ag
=Ag'Ao + kwv'

a matrix whose entries are squares of corresponding entries of Ag
= Ao'bo

the right-hand side in the system Aox = bo

= abg

= Ao'bo + kwv

the distance p1- qi0

distance from the exact solution s

distance from the origin

dsoim Obtained with the AM algorithm

dsom Obtained with the AM2 algorithm

iteration number

the identity matrix

loop variable

number of times the new equation is added to the system of equations

ni, N2, M, My parameters in the AM algorithm

N
Nnz
P1, P2

q:, Q2
R

Ri

GI’ES

Ores,crit

system size (the number of equations/unknowns)

number of nonzero elements in matrix A

points appearing in the AM algorithm

points appearing in the AM algorithm

vector of residuals, = bo - Aox, or = b; - Ayy

Residual for the it" equation

solution vector for the system Aox = b

sum of squares of the residuals

run time for a standard procedure

coefficient vector in the new equation, vix =w

right-hand side of the new equation, vix=w

defined in the AM algorithm (steps 13 and 14)

the vector of unknowns

= Bx, the vector of transformed unknowns

vectors with elements N(0,1)

a vector of zeros

a diagonal matrix, obtained during double normalization of Ao
a diagonal scaling matrix, obtained during double normalization of Ag
root mean square value of the residuals (= R)

critical value of Ores

18

Onx root mean square value of the deviations (= x—s)

Subscripts

o initial values
i it iteration

Superscripts

T transpose of a matrix

References

[1] Gentle, J. E.,
Matrix Algebra - Theory, Computations, and Applications in Statistics
Pub. Springer, New York, USA (2007)

[2] Shewchuk J. R,,
An Introduction to the Conjugate Gradient Method
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (1994)

[3] Nesterov, Y.,
A Method of Solving a Convex Programming Problem with Convergence Rate O(1/k"2)
Soviet Mathematics Doklady, 27, 372-376 (1983)

[4] Sutskever I., Martens J., Dahl G., and Hinton G.,
On the Importance of Initialization and Momentum in Deep Learning
Proceedings of the 30th International Conference on Machine Learning,
PMLR 28(3), 1139-1147 (2013)

[5] Strassen, V.
Gaussian Elimination is not Optimal
Numer. Math. 13 (4), 354-356 (1969)

[6] Coppersmith, D. and Winograd, S.
Matrix multiplication via arithmetic progressions
Journal of Symbolic Computation, 9(3): 251 (1990)

[7] Peng R. and Vempala S.
Solving Sparse Linear Systems Faster than Matrix Multiplication
arXiv:2007.10254 [cs.DS] (2021)

[8] Patwardhan V.,
Solution of a NxN System of Linear Algebraic Equations: A New Algorithm with a Low Time
Complexity
doi: https://doi.org/10.13140/RG.2.2.12918.27204 (2022a)

[9] Patwardhan, V.,
Solution of a NxN System of Linear algebraic Equations: 1 -- The Steepest Descent Method

Revisited

19

https://doi.org/10.13140/RG.2.2.12918.27204

https://doi.org/10.48550/arXiv.2206.07482 (2022b)

[10] Patwardhan V.,
Some Geometrical Properties of a NxN System of Linear Equations
doi: https://doi.org/10.13140/RG.2.2.27971.27687 (2022c)

[11] Sinkhorn, R. and Knopp, P.,
Concerning nonnegative matrices and doubly stochastic matrices
Pacific J. Math. 21, 343-348 (1967)

[12] OIshen R. A. and Rajaratnam B.,
Successive Normalization of Rectangular Arrays
Ann Stat., 38(3), 1638-1664 (2010)

[13] Davis T. A. and Yifan Hu.
The University of Florida Sparse Matrix Collection
ACM Transactions on Mathematical Software 38, 1, Article 1 (December 2011), 25 pages
doi: https://doi.org/10.1145/2049662.2049663 (2011)

Appendix 1

It has been mentioned in the main text that the original system, Aox = bo can be written as A1y = b;
where A; = aAoB, b1 = abg and y = B'x, where ot and B are appropriately selected diagonal matrices.
The matrix B essentially represents a diagonal scaling of the x variables which changes the condition
number of the coefficient matrix.

Double normalization (i.e., repeated normalization of both rows and columns, alternately) eventually
gives a matrix whose rows as well as columns are normalized. Here we use the Euclidian norm for
normalization. In this appendix we describe how to calculate A;, a and B by using double
normalization in an iterative manner.

Let My be a (N x N) matrix, and ax and Bk be diagonal (N x N) matrices, at the k™ iteration. Let Dg and
Dc also be diagonal (N x N) matrices. At the beginning, we take Mo = Ao, ao =1and Bo =1, where l is
the identity matrix. In the k™ iteration, we first normalize all rows and generate Dg. Then we
normalize all columns and generate Dc. My.1 also gets generated during these normalizations. Then
we update ax and Bk using Dr and D¢ to get a1 and Bk:1. A convergence criterion is used to
terminate iterations.

The details of the calculations are given below:
Initial values: k=0, Mo = Ao, oo =1 and Bo =1, SS¢ev = 1, SSgev,crit = 0.01
Do while SSgev > SSdev,crit

SSr(i) = X4 [My (i,)12 fori = 1toN

Dr(i,j) = 1/[SSk(i)1°° fori=j

20

https://doi.org/10.48550/arXiv.2206.07482
https://doi.org/10.13140/RG.2.2.27971.27687
https://doi.org/10.1145/2049662.2049663

Mtemp = Dr Mk

SSC(j) = Z?I=1[Mtemp (i'j)]z

Dc(i,j) = 1/[SSc(j)°®
=0

My.1 = Mtemp Dc
Ol+1 = O Dr
Bk+1 = Bk Dc

SSe(i) = Z?’=1[Mk+1(i']')]2

otherwise

forj = 1toN

fori=j
otherwise

fori = 1toN

SSsev = { XN, abs[SSg(i) — 1]}/ N

k =k+1
Loop

Final values: A; = M1, @ = Qs1, B = Bres

21

