
1 
 

Solution of a NxN System of Linear Algebraic Equations: 
The AM2 Algorithm with a Low Time Complexity 

 
Dr. V. S. Patwardhan1 

September 2024 

 

Abstract 

The AM2 algorithm is a much-improved version of the AM algorithm presented earlier, which solves 

a NxN system of linear algebraic equations using a novel idea. The main idea behind the AM 

algorithm was to generate a second system of linear algebraic equations (having the same solution) 

and take steepest descent steps alternately with the two systems of equations. In this paper, a very 

useful modification of the algorithm is presented. This modification involves transforming the 

coefficient matrix into a form which is equivalent to scaling all the variables in a special manner and 

improve the condition number of the matrix suitably. This modified algorithm (termed as AM2 here) 

was tested with (1) sample problems (with N < 1000) selected from the SuiteSparse collection of 

highly sparse matrices (which are widely used as benchmark matrices for testing sparse matrix 

algorithms and have been obtained from practical applications in several different areas such as 

chemical process simulation, computational fluid dynamics and many others) and (2) randomly 

generated dense problems for N up to 1000. The AM2 algorithm was found to solve the SuiteSparse 

problems with an O[(Nnz)0.83] time complexity. It solved the randomly generated problems in O(N2.08) 

time. Comparison of the results obtained with the AM2 algorithm with those from the AM algorithm 

clearly show the superiority of the AM2 algorithm. The AM2 algorithm is an iterative method which 

terminates when residuals become less than a critical limit. A useful approach is suggested here to 

determine how closely the solution point itself is approached.  

Introduction 

Solving a system of linear algebraic equations is a classical problem which has many practical 

applications in areas such as engineering and science. Systems of large/huge size, involving millions 

of equations and unknowns, arise in many diverse frontier areas including process simulation, 

computational fluid dynamics, meshing, machine learning, computational chemistry, data mining, 

bioinformatics etc. Efficient methods for solving such systems are therefore very important. Such 

methods ideally should converge fast in a reasonably small number of iterations, make use of the 

sparsity to the full extent, be able to deal with very ill-conditioned systems, have a low time 

complexity, and be suitable for parallelisation. The AM2 algorithm developed here, has a low time 

complexity and uses only matrix vector multiplications as the main computational effort. Thus, it can 

make full use of sparsity, and can be easily parallelized. It is shown to handle quite ill-conditioned 

problems successfully. 
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The NxN system of linear equations can be written in a matrix form as A0x = b0, where A0 is a NxN 

matrix, b0 is an N-vector, and x is the solution vector to be determined. There are many direct 

methods such as gaussian elimination and others which give an exact solution. However, it is often 

sufficient to get an approximate solution in practical applications. Iterative methods essentially start 

with a guess solution and improve it iteratively to get closer to the solution within acceptable 

accuracy, i.e., to reduce residuals below some small critical value. A quick summary of these direct as 

well as iterative methods can be found in standard books on linear algebra [for example, J. E. Gentle, 

2007]. Iterative methods such as the steepest descent method and the conjugate gradient method 

are used when the matrix is symmetric and positive definite. (It is well known that A0x = b0 can be 

put in the form Ax = b where A = A0
TA0 and b = A0

Tb0. This gives a symmetric positive definite matrix 

A for any A0.) These are based on minimizing an appropriately defined quadratic function, using 

optimization techniques. Details of these methods, including convergence analysis, are available in 

standard books and reports [for example, J. R. Shewchuk, 1994]. Variations of the steepest descent 

method are available which use the momentum concept to achieve faster convergence [Y. Nesterov, 

1983; I. Sutskever et. Al., 2013].  

The direct methods such as Gaussian elimination and derived methods are known to run in O(N3) 

time. This computational complexity is closely related to the complexity of matrix multiplication. A 

straightforward multiplication of two matrices also has a complexity of O(N3). There have been 

steady efforts in reducing this complexity. It was shown by Strassen [1969] that the complexity can 

be reduced to O(N2.8) by rearranging the computations. It was reduced further to O(N2.37) by  

Coppersmith and Winograd [1990]. Recently the complexity has been reduced further to O(N2.332) by 

Peng and Vempala [2021]. The question whether it can be reduced to the theoretical minimum of 

O(N2) is still an open question. The AM2 algorithm presented here comes very close to this limit. 

The AM2 algorithm presented here, is a modification of the earlier AM algorithm, made by using a 

scaling technique. Before proceeding, it is useful to look at a summary of the AM algorithm itself. 

A summary of the earlier AM algorithm (Augmented matrix algorithm) 

The AM algorithm presented earlier [Patwardhan, 2022a], is based on three geometrical 

observations, which are described below: 

1. The first observation concerns the application of the steepest descent (SD) method for solving a 

NxN system of linear equations. It is well known that the steepest descent method leads to a fast 

approach to the solution (i.e., gives rapid reduction in residuals) in the first few steps and slows 

down substantially in the following steps. There are two possible ways of avoiding this slow 

down [Patwardhan, 2022b], i.e., random movement of the point between iterations, and 

possible matrix transformations between iterations. It was shown that these approaches can 

increase the speed of convergence of the steepest descent method by several orders of 

magnitude. 

2. The second observation concerns the geometry of the intersecting hyperplanes representing a 

NxN system of linear equations. It has been shown earlier [Patwardhan, 2022c] that, in a large 

dimensional space defined by a NxN system of linear equations with large N, several directions 

exist which are almost orthogonal to all the rows of the matrix. Using one or more of these 

directions to get a new equation (i.e., an augmented matrix), it is possible to change the 

orientation of the ellipsoids of the sum of squares of the residuals significantly. This makes it 
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possible to use the SD method alternately with the original and the augmented matrices, to 

achieve good convergence to the solution. 

3. The third observation concerns the effect of adding a new, consistent equation to the system of 

linear algebraic equations, i.e. A0x = b0 repeatedly, on eigenvalues and eigenvectors of matrix A. 

Let the new equation be vTx = w. Let us assume that the solution s satisfies this equation, i.e., vTs 

= w. (v can be one of the directions mentioned in the second observation. The choice of w is 

described later.) If this equation is added k times to the linear system A0x = b0, we get an 

augmented system with a [(N+k) x N] coefficient matrix and a [(N+k) x 1] right hand side. This 

system can be converted to a symmetric positive definite system Akx = bk where  

                                           Ak = (A0
TA0 + kvvT) and bk = A0

Tb0 + kwv                                                (1) 

For a large enough value of k, (i) v becomes the eigenvector of Ak corresponding to the largest 

eigenvalue (which is equal to k itself), and (ii) both the systems, i.e., A0x = b0 and Akx = bk, have 

the same solution s., provided vTs = w. From a geometrical viewpoint, the SSres contours change 

orientation as k increases, while the solution s remains unchanged. The parameter k is a 

selectable parameter. 

A key point is the appropriate choice of w. For a given vector v, the ideal choice of w is vTs. However, 

since s is not known at the beginning, the algorithm starts with a trial value of w, which gets updated 

at each iteration. 

A brief outline of the AM algorithm  

We start with two points q1 and q2 which define a line that points approximately towards the 

solution (the computation of q1 and q2 is described below.) The direction v given by q1 and q2 is used 

to get a trial solution s, and a new equation passing through the trial solution, using w = vTs. The 

original system of equations, i.e. A0x = b0, is converted into two (NxN) symmetric positive definite 

systems, i.e., Ax = b and Akx = bk using equation (1). The point q1 is adjusted by taking a fixed number 

of SD steps with the two systems of equations alternately. The point q2 is also adjusted similarly. The 

adjusted points are used to get an improved direction v, a new trial solution solution, and a new 

value of w. This is done iteratively till the SSres at the approximate solution point becomes acceptably 

low, or the iteration count exceeds a set maximum value. 

The AM algorithm in detail 

______________________________________________________ 

Given:  N, A0, and b0  

Selectable parameters: k, n1, n2, m1, m2 

Initial calculations 

1 Calculate A (= A0
TA0) and b (= A0

Tb0) 

2 Get two random vectors z1 and z2 with elements N(0,1) 

3 Normalize z1 and z2  

4 Set p1 = z1  

5 Get q1,0 by applying m1 steepest descent steps to p1, using A and b  
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6 Calculate d = distance p1 - q1,0 

7 Set p2 = q1,0 + m2 d z2  

8 Get q2,0 by applying m1 steepest descent steps to p2, using A and b 

9 Get v0 = q1,0 - q2,0  

10 Get s0, the point which minimizes SSres along the line v0 drawn through q2,0  

Iterative calculations 

11 Set i = 1 

12 While σres > σres,crit , do 

13     Set w1,i = vi-1
Tsi-1  

14     Set w2,i = vi-1
Tq2,i-1  

15     Calculate Ak,i = (A0
TA0 + kvvT)  

16     Calculate bk,i = A0
Tb0 + kw1,iv                                               

17         For j = 1 to n1 

18             Adjust q1,i-1 by applying n2 SD steps with Ak,i and bk,i  

19             Adjust q1,i-1 further by applying n2 SD steps with A and b  

20         Next j 

21     Set q1,i = q1,i-1 

22     Calculate bk,i = A0
Tb0 + kw2,iv                                               

23         For j = 1 to n1 

24             Adjust q2,i-1 by applying n2 SD steps with Ak,i and bk,i  

25             Adjust q2,i-1 further by applying n2 SD steps with A and b  

26         Next j 

27     Set q2,i = q2,i-1 

28     Calculate vi = q2,i - q1,I  

29     Get si, the point which minimizes SSres along the line vi drawn through q2,i 

30     i = i + 1 

31 End while 

______________________________________________________ 

 

At the end of initial calculations (step 10) the AM algorithm comes up with q1,0 , q2,0 , v0 and s0. These 

are then improved iteratively through steps 11-31. Steps 13 and 14 are aimed at keeping q2,i as an 

anchor, away from the solution, while pushing q1,i towards the solution, which makes the direction vi 

more accurate as iterations proceed. 

The AM algorithm was tested earlier with two sets of problems. (1) Forty problems were selected 

from the SuiteSparse collection and solved using the AM algorithm. Twenty-seven of these were 

solved satisfactorily. For the others, residuals did not get reduced below the critical value even after 

50 iterations, and the solution was not approached closely. The matrices for these 40 problems were 

very ill-conditioned, with the condition numbers covering a range of 130 to 2.31x1018. The details of 

these calculations are available [Patwardhan, 2022a]. (2) Randomly generated problems with a 

problem size up to N = 1000, were solved satisfactorily and gave a very close approach to the 

solution.  The algorithm gave a time complexity of O(N2.2). 
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The AM2 algorithm 

The results obtained with the AM algorithm indicate that the performance can be improved if the 

conditioning of the coefficient matrix can be improved. This can be achieved by transforming the A0 

matrix by using a pre-multiplier and a post-multiplier to get a transformed system of equations. The 

original system A0x = b0 can be written as A1y = b1 where A1 = αA0β, b1 = αb0 and y = β-1x, where α 

and β are appropriately selected diagonal matrices. The matrix β essentially represents a diagonal 

scaling of the x variables which changes the condition number of the coefficient matrix. If the system 

A1y = b1 can be solved for y, then we can recover x, the solution of the original system (i.e., A0x = b0) 

simply by using x = βy. These equations are valid for any arbitrary choice of α and β.  

Selection of α and β: 

The easiest way to get rid of large numbers in the coefficient matrix is to normalize all rows of A0, 

which is equivalent to normalizing each equation in the system A0x = b0. Taking this further, is it 

possible to simultaneously normalize the columns of A0 as well?  

Consider a matrix Asq whose entries are squares of corresponding entries of A0, and therefore are 

nonnegative. If A0 can be put in a form where all its rows as well as columns are normalized (i.e., 

their Euclidian norm is 1), then the corresponding Asq matrix would be double stochastic (i.e., each 

row as well as each column would add up to 1).  A simple iterative method to get the double 

stochastic matrix is to alternately rescale all rows and all columns of Asq to sum to 1. This is the well-

known Sinkhorn and Knopp algorithm [Sinkhorn and Knopp, 1967]. This algorithm can be shown to 

converge to the double stochastic form, if the matrix has support, i.e., it contains at least one 

diagonal with only positive elements. This condition is satisfied if the matrix is invertible. The final 

double stochastic form can be transformed to the final form of A0 just by taking square roots of 

corresponding entries in Asq, keeping the sign of each entry as in the original A0. Alternately, row and 

column normalization (using the Euclidian norm) can be applied to the original A0 repeatedly to get 

the final form. It may be noted that converting Asq to the double stochastic form is computationally 

more efficient than converting A0 by repeated normalization of rows and columns, as the latter 

involves squaring entries at each iteration. However, this choice is not important, because 

calculations show that the time taken for double normalization is negligible compared to the total 

time taken by the AM2 algorithm. 

Double normalisation (i.e., normalisation of rows as well as columns) is an idea that is used widely in 

data analysis in various fields (for example, see Olshen and Rajaratnam [2010]). Many mathematical 

libraries provide standard callable procedures for double normalization using different norms such 

as maximum entry, sum of absolute values etc, as well as the Euclidian norm. 

It is obvious that normalizing matrix rows can be represented as pre-multiplication by a diagonal 

matrix, while normalizing matrix columns can be represented as post-multiplication by another 

diagonal matrix. While normalizing rows and columns repeatedly, these diagonal matrices can be 

collected at each step, and can be combined to get α and β. (The details of these calculations are 

described in Appendix 1.) Let us now assume that α, β, A1 and b1 have been calculated from A0 and 

b0. At this point, the AM algorithm described above can be applied to the system A1y = b1 to get the 

solution y, and then the solution of the original system, A0x = b0, can be calculated using x = βy.  
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The AM2 algorithm thus involves (1) normalization of the rows as well as columns of the A0 matrix 

and (2) subsequent application of the AM algorithm presented earlier. The following sections 

describe the numerical results obtained with the AM2 algorithm, using two different sets of 

problems: (1) problems selected from the SuiteSparse collection of matrices, and (2) randomly 

generated test problems. The results are also compared with the results of the AM algorithm (which 

does not involve double normalization). 

Results using problems from the SuiteSparse collection 

Huge matrices that arise in practical applications in areas such as optimization, chemical process 

simulation, structural engineering, computational fluid dynamics etc. are highly sparse, and often 

have a very high condition number, which can make computations very time consuming. 

The SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Matrix 

Collection), is a large and actively growing set of sparse matrices that arise in real applications 

[Davies and Hu, 2011]. The Collection is widely used for the development and performance 

evaluation of sparse matrix algorithms. It allows for robust and repeatable experiments, since the 

matrices are from real life applications, and are publicly available in many formats. 

The AM2 algorithm described above, was used for solving a set of selected test problems from the 

SuiteSparse collection. Computational results obtained are described below. 

Problem selection:  

Several problems were selected from the SuiteSparse collection, from the areas of chemical process 

simulation and computational fluid dynamics, with N < 1000, to keep the computation time 

reasonable. The condition numbers of the selected matrices, as reported in the SuiteSparse 

collection, covered a wide range of 130 to 2.31x1018. The problems selected are summarised in Table 

1. Totally 40 problems were selected. 

The problems listed in Table 1 cover a range of N up to 1000, and have a very high sparsity, as 

indicated by the number of non-zero elements per row. The condition numbers cover a very wide 

range of 130 to 2.31x1018. Most of the matrices did not have a right-hand side. To test the AM2 

algorithm (which aims to solve linear equations), right-hand sides had to be generated. For this 

purpose, a point was generated in a random direction, 100 units away from the origin, and was 

taken as the solution s. The right-hand side was then generated using this solution, as b0 = A0s. (The 

solution s was used only for generating the right-hand side and was completely ignored while solving 

the system of equations using the AM2 algorithm.) A point 10 units away from the origin, in a 

random direction, was taken as the starting point for the AM2 algorithm. 

Computational results:  

The parameter values selected were k = 30, m1 = 20, m2 = 10, n1 = 40 and n2 = 20. The maximum 

number of iterations permitted was fixed at 50. The AM2 algorithm was applied to the system A0x = 

b0. The progress of iterations was monitored by (1) calculating σRes (i.e., the root mean square of the 
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No. 
Problem 

Name 
N 

Non-zero 
elements 

Non-zero 
elements 
per row 

Condition 
number 

1 pores_1.mtx 30 180 6 1.81E+06 

2 d_ss.mtx 53 149 2.8 6.14E+08 

3 impcol_b.mtx 59 312 5.2 1.64E+05 

4 west0067.mtx 67 294 4.3 1.30E+02 

5 steam3.mtx 80 928 11.6 4.99E+10 

6 d_dyn.mtx 87 238 2.7 7.42E+06 

7 d_dyn1.mtx 87 238 2.7 7.43E+06 

8 tols90.mtx 90 1746 19.4 2.02E+04 

9 olm100.mtx 100 396 3.9 1.53E+04 

10 tub100.mtx 100 396 3.9 1.33E+04 

11 lns_131.mtx 131 536 4 1.28E+15 

12 lnsp_131.mtx 131 536 4 1.28E+15 

13 west0132.mtx 132 414 3.1 4.21E+11 

14 impcol_c.mtx 137 411 3 1.77E+04 

15 west0156.mtx 156 371 2.3 2.31E+18 

16 west0167.mtx 167 507 3 4.79E+10 

17 bwm200.mtx 200 796 3.9 2.41E+03 

18 rdb200.mtx 200 1120 5.6 3.45E+02 

19 rdb200l.mtx 200 1120 5.6 1.33E+02 

20 impcol_a.mtx 207 572 2.7 1.35E+08 

21 ex1.mtx 216 4352 20.1 3.30E+04 

22 impcol_e.mtx 225 1308 5.8 7.10E+06 

23 saylr1.mtx 238 1128 4.7 7.78E+08 

24 steam1.mtx 240 3762 15.6 2.83E+07 

25 tols340.mtx 340 2196 6.4 2.03E+05 

26 poisson2D.mtx 367 2417 6.5 1.33E+02 

27 impcol_d.mtx 425 1339 3.1 2.06E+03 

28 ex2.mtx 441 13640 30.9 1.03E+10 

29 rdb450.mtx 450 2580 5.7 6.85E+02 

30 rdb450l.mtx 450 2580 5.7 2.10E+02 

31 olm500.mtx 500 1996 3.9 3.73E+05 

32 pores_3.mtx 532 3474 6.5 5.61E+05 

33 steam2.mtx 600 13760 22.9 3.78E+06 

34 ex21.mtx 656 19144 29.1 5.68E+08 

35 rdb800l.mtx 800 4640 5.8 3.23E+02 

36 ex22.mtx 839 22715 27 3.28E+04 

37 ex25.mtx 848 24612 29 5.11E+07 

38 orsirr_2.mtx 886 5970 6.7 6.33E+04 

39 DK01R.mtx 903 11766 13 5.89E+07 

40 rdb968.mtx 968 5632 5.8 3.78E+02 

Table 1. Problems selected from the SuiteSparse collection 

 

residuals, Ri for the current y), and (2) calculating current x from current y to get the deviations (xi - 

si). The iterations were terminated when σRes became smaller than a critical value (which was 

selected as 0.0001). The final point was characterised by calculating σΔx (i.e., the root mean square 

value of the deviations (xi - si) for the system A0x = b0, for i = 1 to N).  
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No. Problem name N Nnz 
Iter 

reqd. 
Run time, 
reduced 

σRes σΔx 

1 pores_1.mtx 30 180 5 0.108 2.85E-09 6.73E-07 

2 d_ss.mtx 53 149 5 0.115 3.22E-08 2.24E-07 

3 impcol_b.mtx 59 312 3 0.231 3.98E-13 7.52E-11 

4 west0067.mtx 67 294 3 0.114 9.40E-07 1.45E-05 

5 steam3.mtx 80 928 1 0.081 1.01E-09 9.57E-07 

6 d_dyn.mtx 87 238 1 0.030 7.45E-11 1.22E-10 

7 d_dyn1.mtx 87 238 2 0.057 2.03E-13 1.32E-12 

8 tols90.mtx 90 1746 1 0.122 6.33E-15 1.82E-14 

9 olm100.mtx 100 396 5 0.191 8.10E-07 1.79E-04 

10 tub100.mtx 100 396 40 1.552 8.55E-07 8.61E-04 

11 lns_131.mtx 131 536 3 0.159 6.54E-08 1.92E-05 

12 lnsp_131.mtx 131 536 1 0.052 8.03E-07 7.43E-05 

13 west0132.mtx 132 414 5 0.214 1.16E-09 3.39E-08 

14 impcol_c.mtx 137 411 2 0.086 3.34E-08 2.69E-07 

15 west0156.mtx 156 371 2 0.088 1.02E-07 3.80E-01 

16 west0167.mtx 167 507 4 0.209 2.24E-10 3.42E-09 

17 bwm200.mtx 200 796 28 2.067 9.67E-07 8.09E-04 

18 rdb200.mtx 200 1120 4 0.370 6.47E-07 9.35E-06 

19 rdb200l.mtx 200 1120 3 0.278 7.73E-08 6.77E-07 

20 impcol_a.mtx 207 572 4 0.252 4.58E-08 6.49E-06 

21 ex1.mtx 216 4352 1 0.295 7.90E-13 9.25E-11 

22 impcol_e.mtx 225 1308 1 0.109 8.04E-11 2.35E-09 

23 saylr1.mtx 238 1128 50 4.978 1.39E-04 4.14E+01 

24 steam1.mtx 240 3762 1 0.257 6.59E-15 1.22E-11 

25 tols340.mtx 340 2196 1 0.178 9.70E-15 1.14E-14 

26 poisson2D.mtx 367 2417 4 0.770 1.27E-08 2.69E-07 

27 impcol_d.mtx 425 1339 5 0.680 2.65E-09 9.56E-08 

28 ex2.mtx 441 13640 5 4.249 1.23E-09 6.08E-08 

29 rdb450.mtx 450 2580 8 1.694 8.70E-07 1.73E-04 

30 rdb450l.mtx 450 2580 4 0.846 5.57E-08 3.24E-06 

31 olm500.mtx 500 1996 50 9.186 5.26E-04 4.38E+00 

32 pores_3.mtx 532 3474 50 13.823 1.79E-04 1.69E+01 

33 steam2.mtx 600 13760 1 0.882 2.72E-15 3.29E-11 

34 ex21.mtx 656 19144 4 4.788 6.14E-08 1.47E-03 

35 rdb800l.mtx 800 4640 5 1.880 1.41E-07 1.52E-05 

36 ex22.mtx 839 22715 4 5.696 8.01E-08 2.59E-06 

37 ex25.mtx 848 24612 5 9.896 8.23E-08 1.62E-04 

38 orsirr_2.mtx 886 5970 50 29.409 6.85E-05 2.92E-01 

39 DK01R.mtx 903 11766 6 4.898 3.68E-08 2.55E-04 

40 rdb968.mtx 968 5632 5 2.474 6.09E-07 7.58E-05 
 

Table 2. Computational results with the AM2 algorithm for problems selected from  

                The SuiteSparse collection (N <= 1000) 

 

The run time, in seconds, of any algorithm depends not only on the algorithm itself, but other factors 

such as the computer speed, the coding language, the development environment used etc. In order 

to eliminate the effect of these external factors, a reference run time Tref was obtained for a 

standard procedure, and the run times obtained for different problems were normalised by dividing 

by Tref to get a run time ratio. The standard procedure selected was the solution of a dense random 
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 Figure 1. Run time ratio vs. Nnz for different SuiteSparse problems. 

 

 

 Figure 2. A comparison of approach to the solution with/without double normalization 

 

square matrix of dimension 1000 by using Gaussian elimination. This way, the run time ratios 

reported here should be reproducible on other computer systems. 
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Table 2 shows the computational results obtained with the AM2 algorithm for the problems listed in 

Table 1. It is seen that 36 of the 40 problems gave convergence in less than 50 iterations, and thus 

were solved very well by the AM2 algorithm. For these problems, the AM2 algorithm rapidly 

approaches the solution, often in just a few iterations. The average deviation in solution coordinates 

is less than 0.01, and the average number of iterations required is 5. For the 4 problems (problem 

numbers 23, 31, 32 and 38 in Table 2) which are not solved within 50 iterations, the average 

deviation in solution coordinates is 15.73. For these problems, the speed of approaching the solution 

becomes too low after some point. It may be noted that the AM2 algorithm does not make use of 

any explicit preconditioners. For these four problems, preconditioners may have to be used. The 

reduced run time for the 36 problems is shown in Figure 1 against Nnz, the number of nonzero 

elements. The time complexity is seen to be O(Nnz0.83). It may be noted here that Nnz is used instead 

of N, because the computation procedure uses sparse matrix routines, whose computation time is 

related to Nnz, and not N. For dense matrices, Nnz = N2, while for sparse matrices, Nnz << N2, as 

seen in Table 1. 

It has been mentioned earlier that the AM2 algorithm consists of double normalization followed by 

the AM algorithm. It is interesting to see the effect of the double normalization on the results. It may 

be noted that dsoln, i.e., the distance between the approximate and the exact solutions, is equal to 

σΔx(N)0.5. Figure 2 shows dsoln,AM2 and dsoln,AM, i.e., the dsoln values for the AM2 and the AM algorithms 

respectively, for the 36 SuiteSparse problems. The line represents equality of the two values. It is 

seen that the AM2 algorithm approaches the solution much more closely than the AM algorithm. 

This is the result of the double normalization. 

It is interesting to see some results obtained during the double normalization of the A0 matrix. The 

detailed procedure for double normalization is shown in Appendix 1. Table 3 shows a summary of 

the elements of β matrices obtained for selected SuiteSparse problems. The elements of β vary 

between 1.66x10-5 and 1.04x107, which is a very wide range. It has been mentioned earlier that the β 

values represent scaling of the x-variables in the original problem. These β values indicate a very 

strong scaling which is a result of the double normalization procedure. This is the reason for the 

superior performance of the AM2 algorithm over the AM algorithm. The wide range of β values is 

related to the very high condition numbers of the SuiteSparse problems. The average number of 

iterations taken by the double normalization procedure is 25. These results are quite in contrast to 

similar results presented later for randomly generated problems. 

The test problems considered so far were those selected from the SuiteSparse collection. It is 

interesting to examine similar results obtained for randomly generated problems involving gaussian 

matrices. 

Results using randomly generated test problems 

Randomly generated test problems have certain properties arising out of the random procedure 

used for generating these, and the computational results obtained may be different from those 

presented above for the SuiteSparse problems. However, it is interesting to see the results obtained 

with randomly generated problems. 
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No. fName N Nnz β Max β Min β Ratio 
Iter- 

ations 

1 pores_1.mtx 30 180 4.17E+02 1.31E-01 3.15E-04 14 

2 d_ss.mtx 53 149 1.81E+01 9.71E-03 5.37E-04 26 

3 impcol_b.mtx 59 312 5.73E+01 1.92E-02 3.35E-04 43 

4 west0067.mtx 67 294 7.93E+00 4.56E-01 5.75E-02 11 

5 steam3.mtx 80 928 4.56E+03 2.83E-01 6.19E-05 19 

6 d_dyn.mtx 87 238 1.84E+01 1.21E-03 6.55E-05 38 

7 d_dyn1.mtx 87 238 6.22E+01 8.25E-04 1.33E-05 47 

8 tols90.mtx 90 1746 3.49E+00 8.02E-01 2.30E-01 2 

9 olm100.mtx 100 396 1.92E+00 6.23E-01 3.24E-01 7 

10 tub100.mtx 100 396 1.24E+00 8.72E-01 7.02E-01 1 

11 lns_131.mtx 131 536 3.77E+02 1.19E-03 3.16E-06 47 

12 lnsp_131.mtx 131 536 3.77E+02 1.19E-03 3.16E-06 47 

13 west0132.mtx 132 414 3.24E+03 1.45E-04 4.49E-08 74 

14 impcol_c.mtx 137 411 2.24E+01 4.77E-02 2.13E-03 46 

15 west0156.mtx 156 371 1.04E+07 1.30E-03 1.26E-10 68 

16 west0167.mtx 167 507 3.67E+03 2.82E-04 7.67E-08 62 

17 bwm200.mtx 200 796 1.02E+00 9.83E-01 9.67E-01 1 

18 rdb200.mtx 200 1120 1.45E+00 7.78E-01 5.36E-01 4 

19 rdb200l.mtx 200 1120 1.27E+00 8.50E-01 6.67E-01 1 

20 impcol_a.mtx 207 572 1.01E+04 5.61E-04 5.53E-08 81 

21 ex1.mtx 216 4352 6.41E+01 4.29E-01 6.69E-03 11 

22 impcol_e.mtx 225 1308 4.85E+03 9.03E-03 1.86E-06 69 

23 saylr1.mtx 238 1128 3.17E+00 4.60E-01 1.45E-01 12 

24 steam1.mtx 240 3762 1.80E+03 4.77E-01 2.65E-04 3 

25 tols340.mtx 340 2196 2.67E+00 8.65E-01 3.24E-01 1 

26 poisson2D.mtx 367 2417 1.01E+00 9.70E-01 9.57E-01 1 

27 impcol_d.mtx 425 1339 1.23E+01 2.55E-02 2.08E-03 51 

28 ex2.mtx 441 13640 9.85E+06 1.66E-05 1.68E-12 100 

29 rdb450.mtx 450 2580 1.17E+00 8.82E-01 7.57E-01 7 

30 rdb450l.mtx 450 2580 1.95E+00 7.50E-01 3.84E-01 2 

31 olm500.mtx 500 1996 1.89E+00 6.29E-01 3.32E-01 7 

32 pores_3.mtx 532 3474 5.91E+01 1.37E-01 2.31E-03 18 

33 steam2.mtx 600 13760 4.37E+03 3.09E-01 7.06E-05 18 

34 ex21.mtx 656 19144 5.55E+02 4.23E-02 7.62E-05 13 

35 rdb800l.mtx 800 4640 1.52E+00 7.69E-01 5.05E-01 4 

36 ex22.mtx 839 22715 2.71E+01 2.44E-01 8.99E-03 6 

37 ex25.mtx 848 24612 1.42E+03 9.48E-02 6.67E-05 9 

38 orsirr_2.mtx 886 5970 1.28E+00 8.57E-01 6.70E-01 3 

39 DK01R.mtx 903 11766 6.19E+03 6.35E-02 1.02E-05 18 

40 rdb968.mtx 968 5632 1.40E+00 7.86E-01 5.60E-01 5 

Table 3.  A summary of β values for SuiteSparse matrices (N upto 1000) 
 

Problem generation:  

Random problems were generated such that (1) the solution point s was at a fixed distance from the 

origin, but in a random direction, (2) the entries in the coefficient matrix A0 were generated as  
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No. N σRes σΔx 
Run time 

ratio 
iterations 
required 

1 10 1.1E-05 3.41E-05 0.004038 1.0 

2 14 6.07E-06 8.6E-05 0.007279 1.6 

3 20 1.66E-05 0.000263 0.013062 1.8 

4 32 4.31E-05 0.001187 0.032457 2.8 

5 50 1.61E-05 0.00031 0.057883 2.6 

6 70 4.96E-05 0.091657 0.089442 2.2 

7 100 2.25E-05 0.001454 0.214981 2.8 

8 140 5.45E-05 0.011221 0.608348 4.0 

9 200 6.72E-05 0.024496 1.401912 4.8 

10 320 7.07E-05 0.023607 2.646428 3.2 

11 500 7.68E-05 0.011599 10.9888 5.0 

12 700 8.82E-05 0.018434 23.82379 5.2 

13 1000 8.28E-05 0.018607 58.41226 6.2 

Table 4. Computational results obtained for randomly generated 
                Problems, N = 10-1000 (average of 5 problems for each N) 

 

N(0,1), and then each row of A0 was normalized. The b0 vector was generated as b0 = A0s. The 

solution point s was used only for generating the right-hand side and was never used while solving 

the resulting system of equations (i.e., A0x = b0) using the AM2 algorithm. The details of this 

procedure were described earlier [Patwardhan, 2022c]. N was varied from 10 to 1000 using 13 

values of N which were almost uniformly spaced on a logarithmic scale.  

Computational results: 

The parameter values selected were k = 4, m1 = 20, m2 = 5, n1 = 10 and n2 = 20. The AM2 algorithm 

was applied to the system A0x = b0. The origin was taken as the starting point. During the iterative 

calculations, the known solution point was used only for characterising the successive iterates as 

stated above and was completely ignored in the solution process. The algorithm was tested for N = 

10 to 1000. For each N, five different problems were generated independently. The running time 

refers only to the time taken for calculating the solution, and excludes the time taken for reading or 

generating the problem data.  

The computational results obtained with these randomly generated problems are shown in Table 4. 

Figure 3 shows a log-log plot of run time ratio vs. problem size N. Figure 4 shows a similar plot of the 

number of iterations required vs. problem size N. Table 5 shows results obtained during double 

normalization. 

It is seen from Table 4 that all the problems were solved successfully, with the final σRes less than 

0.0001. The σΔx values increase somewhat with N, but even for N = 1000, all coordinates of s get 

calculated within about 0.02 or so. It also shows that as N goes from 10 to 1000, the number of 

iterations increase only from 1 to 6.2. In other words, for a 100-fold increase in N, the number of 

iterations increases only 6 times or so. Figure 3 shows that the time complexity of the AM2 
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Figure 3. Run time ratio vs. N for randomly generated problems 

 

 
 

 Figure 4. No. of iterations required for different problem sizes (N) 
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No. N β Max β Min β Ratio 
Iter- 

ations 

1 10 1.69 0.70 0.43 2.6 

2 14 1.39 0.75 0.55 2.2 

3 20 1.41 0.79 0.59 2.0 

4 32 1.40 0.81 0.58 2.0 

5 50 1.36 0.80 0.59 1.8 

6 70 1.21 0.84 0.70 1.4 

7 100 1.21 0.85 0.70 1.0 

8 140 1.19 0.88 0.74 1.0 

9 200 1.15 0.87 0.76 1.0 

10 320 1.11 0.88 0.80 1.0 

11 500 1.10 0.91 0.83 1.0 

12 700 1.09 0.92 0.85 1.0 

13 1000 1.08 0.93 0.86 1.0 

Table 5.  A summary of β for randomly generated problems, 

                N = 10-1000 (Average of 5 problems for each N) 

 

algorithm is about O(N2.08). This is better than computational complexities reported so far and is 

surprisingly close to the theoretical limit of 2.0. Figure 4 shows that the number of iterations 

increase very slowly with N, and show a dependence of O(N0.3) or so.  

It is interesting to see some results obtained during the double normalization of the A0 matrix. The 

detailed procedure for double normalization is shown in Appendix 1. Table 5 shows a summary of 

the elements of β matrices obtained for randomly generated problems. The elements of β vary 

between 0.7 and 1.69, which is a narrow range close to 1 (in contrast to the very large range 

presented above for the SuiteSparse problems). It appears that since the matrices themselves are 

generated at random, it does not take much correction to achieve normalization of both rows and 

columns, and it takes only a few iterations to achieve it. This is in contrast with the large number of 

iterations required for SuiteSparse matrices, as presented above. 

Discussion 

Problems from the SuiteSparse collection:  

The condition numbers for the 40 problems selected from the SuiteSparse collection were in the 

very wide range of 130 to 2.31x1018. These represent very elongated ellipsoids as the quadratic SSres 

surfaces. The AM2 algorithm essentially takes steepest descent steps alternately with the original 

and the augmented matrix systems. It approaches the solution closely in most of the cases and 

solves 36 of the 40 problems very well. However, for the remaining 4 problems, it gets stuck at a 

point quite far away from the solution. The average dsoln for the 36 problems is 0.13, while that for 

the 4 problems is 283.5! (Out of the 36 problems, problem no. 15 has dsoln = 4.75, which is high 

despite the good convergence in two steps. If this point is left out, the average dsoln for the 35 

problems is 0.0023, which is much better.) This can be interpreted in terms of the geometry of the N 

hyperplanes. The 4 problems give approximate solution points which have small residual values from 
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No. Problem Name N 
dSoln,  

RHS=0 
dSoln,  

RHS=b0 

1 pores_1.mtx 30 1.09E-05 3.69E-06 

2 d_ss.mtx 53 4.38E-06 1.63E-06 

3 impcol_b.mtx 59 1.57E-05 5.77E-10 

4 west0067.mtx 67 3.58E-05 1.19E-04 

5 steam3.mtx 80 1.63E-05 8.56E-06 

6 d_dyn.mtx 87 1.15E-13 1.14E-09 

7 d_dyn1.mtx 87 5.25E-06 1.23E-11 

8 tols90.mtx 90 1.17E-26 1.72E-13 

9 olm100.mtx 100 2.46E-05 1.79E-03 

10 tub100.mtx 100 5.83E-03 8.61E-03 

11 lns_131.mtx 131 2.03E-04 2.20E-04 

12 lnsp_131.mtx 131 4.82E-07 8.50E-04 

13 west0132.mtx 132 7.87E-06 3.89E-07 

14 impcol_c.mtx 137 1.31E-05 3.15E-06 

15 west0156.mtx 156 1.09E+01 4.75E+00 

16 west0167.mtx 167 3.68E-06 4.42E-08 

17 bwm200.mtx 200 7.73E-03 1.14E-02 

18 rdb200.mtx 200 3.05E-04 1.32E-04 

19 rdb200l.mtx 200 5.89E-04 9.58E-06 

20 impcol_a.mtx 207 1.50E-06 9.34E-05 

21 ex1.mtx 216 2.21E-11 1.36E-09 

22 impcol_e.mtx 225 3.14E-10 3.52E-08 

23 saylr1.mtx 238 6.49E+01 6.38E+02 

24 steam1.mtx 240 5.07E-22 1.89E-10 

25 tols340.mtx 340 2.79E-22 2.11E-13 

26 poisson2D.mtx 367 6.30E-06 5.16E-06 

27 impcol_d.mtx 425 2.00E-06 1.97E-06 

28 ex2.mtx 441 1.20E-05 1.28E-06 

29 rdb450.mtx 450 1.24E-03 3.66E-03 

30 rdb450l.mtx 450 1.97E-05 6.87E-05 

31 olm500.mtx 500 4.14E+01 9.79E+01 

32 pores_3.mtx 532 5.55E+01 3.89E+02 

33 steam2.mtx 600 1.31E-59 8.05E-10 

34 ex21.mtx 656 5.85E-03 3.78E-02 

35 rdb800l.mtx 800 1.45E-04 4.29E-04 

36 ex22.mtx 839 2.73E-05 7.49E-05 

37 ex25.mtx 848 2.66E-05 4.73E-03 

38 orsirr_2.mtx 886 2.67E-01 8.68E+00 

39 DK01R.mtx 903 2.25E-02 7.67E-03 

40 rdb968.mtx 968 3.08E-03 2.36E-03 

 
Table 6. dsoln with the AM2 algorithm, with original b0, 
                and with b0 = 0 

 

the N equations, even though they are far away from the exact solution. This means the cone made 

by the hyperplanes (with its apex at s) which contains the approximate solution point is extremely 

sharp. This is a geometrical characteristic of the N hyperplanes which prevents good convergence. 
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 Figure 5. dsoln with the AM2 algorithm for SuiteSparse problems, with RHS = b0, and with RHS = 0 

 

This brings us to an important question. In this study, we have characterised the final solution point 

in terms of the residuals, as well as in terms of its distance from the exact solution. However, when 

we solve a new practical problem with the AM2 algorithm, we will get the approximate solution 

based on the reduction of σRes below a critical value. However, the exact solution will be unknown! In 

such a situation, it is possible to get some idea about dsoln? It has been argued that the ease (or 

otherwise) of convergence of the AM2 algorithm is related to the geometrical structure of the 

system of equations (i.e., the N hyperplanes) itself. If we change the right-hand side, i.e., b0 in the 

system of equations A0x = b0, without changing A0, then the geometrical characteristics of the 

hyperplanes would remain unchanged. Changing b0 is equivalent to a translation of the hyperplanes 

to a new position, without changing their orientations. This changes the solution point, but the 

convergence behaviour of the AM2 algorithm remains unchanged. Let us change the right-hand side 

to zero, and consider the homogeneous system A0x = 0, where 0 is a vector of zeros. This system has 

the origin itself as the solution, i.e., s = 0. Solving this system with the AM2 algorithm will give us the 

approximate solution (obtained by reducing σRes to a value smaller than a critical value, subject to 

the maximum limit on the number of iterations). Let dsoln,0 be the distance between the approximate 

and the exact solution for this homogeneous system. Now we can calculate dsoln,0 since we know s! 

All the 40 SuiteSparse problems selected were solved using this approach, and the dsoln,0 values 

obtained are shown in Table 6 along with the dsoln values obtained for the original problems. Figure 5 

shows these values graphically. 

It is seen from figure 5 that the dsoln and dsoln,0 vary monotonically. The five points inside the dashed 

ellipse show that when the dsoln,0 is high, the dsoln values are also high (i.e., 0.3 to 1000). On the other 

hand, for all the other points, both dsoln,0 and dsoln values are small, less than 0.02 or so. This gives us 

a way of estimating the accuracy of the approximate solution of a new problem (given by A0x = b0) 
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obtained by using the AM2 algorithm. All we need to do is to solve the corresponding homogeneous 

system, i.e., A0x = 0, to get the approximate solution with the AM2 algorithm, and get dsoln,0, which is 

just the distance between the approximate solution and the origin (which is the exact solution of the 

homogeneous system). If dsoln,0 is small enough, then the approximate solution of A0x = b0 will also 

be close enough to s. However, if dsoln,0 is rather large, then the approximate solution of A0x = b0 will 

not be very accurate, and some other approach such as using a preconditioner needs to be 

considered, if a greater accuracy is required. Many times, the solution obtained by reducing σRes 

below a critical value, may be quite acceptable in practice, though dsoln may not be too small. 

Randomly generated problems: 

The results presented in Table 4 and Figures 3 and 4 indicate that the AM2 algorithm successfully 

solved all the 65 randomly generated problems with N ≤ 1000. The final solution given by the AM2 

algorithm was very close to the actual solution. The approach to the solution was fast, and the 

algorithm took just a few iterations. The number of iterations was found to have only a weak 

dependence on the problem size. The overall time complexity was found to be in O(N2.08), which is 

very attractive, and compares very closely with the theoretical minimum of O(N2). The number of 

iterations shows a weak dependence on problem size, as seen in Figure 4. Table 5 shows that the β 

values obtained in double normalization cover a rather narrow range of 0.70 to 1.69. (In contrast, 

the β values for SuiteSparse problems cover a very wide range of 1.66x10-5 to 1.04x107.) It is obvious 

that the matrices, generated at random, do not need much effort to achieve normalization of both 

rows and columns, and it takes only a few iterations to achieve it. If these problems are solved with 

the AM algorithm instead of the AM2 algorithm, the results are not significantly different, and are 

not presented here, for the sake of brevity. 

The computation time complexity for the SuiteSparse problems is O(Nnz0.83), and that for randomly 

generated dense problems is O(N2.08). These are quite comparable since Nnz = N2 for dense matrices. 

Conclusions 

1. The AM2 algorithm presented here consists of double normalization of the coefficient matrix, 

followed by the application of the AM algorithm presented earlier. The performance of the AM2 

algorithm is shown to be much superior compared to that of the AM algorithm. Thus, double 

normalization plays a very important role in the AM2 algorithm. Double normalization is shown 

to be equivalent to scaling the variables. The AM2 algorithm solved most (36 out of 40) of the 

problems selected from the SuiteSparse collection (up to N < 1000) successfully and gave a time 

complexity of O(Nnz0.83), where Nnz is the number of nonzero elements. This low time 

complexity makes the AM2 algorithm attractive for huge systems (N >> 1000).  

2. The convergence criterion used by the AM2 algorithm consists of reduction of σRes below a 

critical value. A procedure is suggested here for estimating the distance between the exact and 

approximate solutions, which is based on solving a homogeneous system.  

3. The AM2 algorithm was also used for solving randomly generated problems for N = 10 to 1000. 

All 65 problems were solved successfully, and the approximate solution was found to be very 

close to the exact solution. The time complexity was found to be in O(N2.08), which is almost the 

same as the theoretical minimum of O(N2).  

4. The scaling produced by the double normalization procedure was found to be severe for the 

highly ill-conditioned SuiteSparse problems, while it was rather mild for the randomly generated 
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problems. Most of the computational effort of the AM2 algorithm is for matrix-vector 

multiplications. Therefore, it can make full use of sparsity, and can be efficiently parallelized.  

 

Nomenclature 

A = A0
TA0 

A0  the coefficient matrix in the system A0x = b0 

A1  = αA0β, the matrix obtained by double normalization of A0 

Ak  = A0
TA0 + kvvT  

Asq a matrix whose entries are squares of corresponding entries of A0 

b = A0
Tb0 

b0  the right-hand side in the system A0x = b0 

b1  = αb0 

bk  = A0
Tb0 + kwv                                               

d  the distance p1 - q1,0 

dsoln distance from the exact solution s 

dsoln,0 distance from the origin 

dsoln,AM dsoln obtained with the AM algorithm 

dsoln,AM2 dsoln obtained with the AM2 algorithm 

i iteration number 

I the identity matrix 

j loop variable 

k number of times the new equation is added to the system of equations  

n1, n2, m1, m2  parameters in the AM algorithm 

N system size (the number of equations/unknowns) 

Nnz number of nonzero elements in matrix A 

p1 , p2 points appearing in the AM algorithm 

q1 , q2 points appearing in the AM algorithm 

R vector of residuals, = b0 - A0x, or = b1 - A1y 

Ri Residual for the ith equation 

s solution vector for the system A0x = b0 

SSres sum of squares of the residuals 

Tref run time for a standard procedure 

v coefficient vector in the new equation, vTx = w 

w right-hand side of the new equation, vTx = w 

w1 , w2 defined in the AM algorithm (steps 13 and 14) 

x the vector of unknowns 

y = β-1x, the vector of transformed unknowns 

z1 , z2  vectors with elements N(0,1) 

0 a vector of zeros 

α a diagonal matrix, obtained during double normalization of A0 

β a diagonal scaling matrix, obtained during double normalization of A0 

σres root mean square value of the residuals (= R) 

σres,crit critical value of σres 
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σΔx  root mean square value of the deviations (= x – s) 
 

Subscripts 

o            initial values 

i ith iteration 
 

Superscripts 

T transpose of a matrix 
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Appendix 1 

It has been mentioned in the main text that the original system, A0x = b0 can be written as A1y = b1 

where A1 = αA0β, b1 = αb0 and y = β-1x, where α and β are appropriately selected diagonal matrices. 

The matrix β essentially represents a diagonal scaling of the x variables which changes the condition 

number of the coefficient matrix. 

Double normalization (i.e., repeated normalization of both rows and columns, alternately) eventually 

gives a matrix whose rows as well as columns are normalized. Here we use the Euclidian norm for 

normalization. In this appendix we describe how to calculate A1, α and β by using double 

normalization in an iterative manner. 

Let Mk be a (N x N) matrix, and αk and βk be diagonal (N x N) matrices, at the kth iteration. Let DR and 

DC also be diagonal (N x N) matrices. At the beginning, we take M0 = A0, α0 = I and β0 = I, where I is 

the identity matrix. In the kth iteration, we first normalize all rows and generate DR. Then we 

normalize all columns and generate DC. Mk+1 also gets generated during these normalizations. Then 

we update αk and βk using DR and DC to get αk+1 and βk+1. A convergence criterion is used to 

terminate iterations. 

The details of the calculations are given below: 

Initial values: k=0, M0 =  A0, α0 = I and β0 = I, SSdev = 1, SSdev,crit = 0.01 

Do while SSdev > SSdev,crit 

SSR(i) = ∑ [𝐌𝑘(𝑖, 𝑗)]2                𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑁𝑁
𝑗=1  

DR(i,j) = 1/[SSR(i)]0.5                         for i = j 

https://doi.org/10.48550/arXiv.2206.07482
https://doi.org/10.13140/RG.2.2.27971.27687
https://doi.org/10.1145/2049662.2049663
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           = 0    otherwise 
 
Mtemp = DR Mk  
 

SSC(j) = ∑ [𝐌𝑡𝑒𝑚𝑝(𝑖, 𝑗)]
2  

         𝑓𝑜𝑟 𝑗 =  1 𝑡𝑜 𝑁𝑁
𝑖=1  

DC(i,j) = 1/[SSC(j)]0.5                         for i = j 
           = 0    otherwise 
 
Mk+1 = Mtemp DC 
 
αk+1 = αk DR 
 
βk+1 = βk DC 
 

SSR(i) = ∑ [𝐌𝑘+1(𝑖, 𝑗)]2                  𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑁𝑁
𝑗=1  

SSdev = { ∑ 𝑎𝑏𝑠[𝑆𝑆𝑅(𝑖) − 1] 𝑁
𝑖=1 } / N 

 
k = k+1 

Loop 
 
Final values: A1 = Mk+1, α = αk+1, β = βk+1 
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