
1

Solution of a NxN System of Linear Algebraic Equations:
The AM2 Algorithm with a Low Time Complexity

Dr. V. S. Patwardhan1

September 2024

Abstract

The AM2 algorithm is a much-improved version of the AM algorithm presented earlier, which solves

a NxN system of linear algebraic equations using a novel idea. The main idea behind the AM

algorithm was to generate a second system of linear algebraic equations (having the same solution)

and take steepest descent steps alternately with the two systems of equations. In this paper, a very

useful modification of the algorithm is presented. This modification involves transforming the

coefficient matrix into a form which is equivalent to scaling all the variables in a special manner and

improve the condition number of the matrix suitably. This modified algorithm (termed as AM2 here)

was tested with (1) sample problems (with N < 1000) selected from the SuiteSparse collection of

highly sparse matrices (which are widely used as benchmark matrices for testing sparse matrix

algorithms and have been obtained from practical applications in several different areas such as

chemical process simulation, computational fluid dynamics and many others) and (2) randomly

generated dense problems for N up to 1000. The AM2 algorithm was found to solve the SuiteSparse

problems with an O[(Nnz)0.83] time complexity. It solved the randomly generated problems in O(N2.08)

time. Comparison of the results obtained with the AM2 algorithm with those from the AM algorithm

clearly show the superiority of the AM2 algorithm. The AM2 algorithm is an iterative method which

terminates when residuals become less than a critical limit. A useful approach is suggested here to

determine how closely the solution point itself is approached.

Introduction

Solving a system of linear algebraic equations is a classical problem which has many practical

applications in areas such as engineering and science. Systems of large/huge size, involving millions

of equations and unknowns, arise in many diverse frontier areas including process simulation,

computational fluid dynamics, meshing, machine learning, computational chemistry, data mining,

bioinformatics etc. Efficient methods for solving such systems are therefore very important. Such

methods ideally should converge fast in a reasonably small number of iterations, make use of the

sparsity to the full extent, be able to deal with very ill-conditioned systems, have a low time

complexity, and be suitable for parallelisation. The AM2 algorithm developed here, has a low time

complexity and uses only matrix vector multiplications as the main computational effort. Thus, it can

make full use of sparsity, and can be easily parallelized. It is shown to handle quite ill-conditioned

problems successfully.

__

1 Independent researcher. Formerly, Scientist G, National Chemical Laboratory, Pune 411008, India.

 Email: vspatw@gmail.com , URL : https://www.vspatwardhan.com

mailto:vspatw@gmail.com
https://www.vspatwardhan.com/

2

The NxN system of linear equations can be written in a matrix form as A0x = b0, where A0 is a NxN

matrix, b0 is an N-vector, and x is the solution vector to be determined. There are many direct

methods such as gaussian elimination and others which give an exact solution. However, it is often

sufficient to get an approximate solution in practical applications. Iterative methods essentially start

with a guess solution and improve it iteratively to get closer to the solution within acceptable

accuracy, i.e., to reduce residuals below some small critical value. A quick summary of these direct as

well as iterative methods can be found in standard books on linear algebra [for example, J. E. Gentle,

2007]. Iterative methods such as the steepest descent method and the conjugate gradient method

are used when the matrix is symmetric and positive definite. (It is well known that A0x = b0 can be

put in the form Ax = b where A = A0
TA0 and b = A0

Tb0. This gives a symmetric positive definite matrix

A for any A0.) These are based on minimizing an appropriately defined quadratic function, using

optimization techniques. Details of these methods, including convergence analysis, are available in

standard books and reports [for example, J. R. Shewchuk, 1994]. Variations of the steepest descent

method are available which use the momentum concept to achieve faster convergence [Y. Nesterov,

1983; I. Sutskever et. Al., 2013].

The direct methods such as Gaussian elimination and derived methods are known to run in O(N3)

time. This computational complexity is closely related to the complexity of matrix multiplication. A

straightforward multiplication of two matrices also has a complexity of O(N3). There have been

steady efforts in reducing this complexity. It was shown by Strassen [1969] that the complexity can

be reduced to O(N2.8) by rearranging the computations. It was reduced further to O(N2.37) by

Coppersmith and Winograd [1990]. Recently the complexity has been reduced further to O(N2.332) by

Peng and Vempala [2021]. The question whether it can be reduced to the theoretical minimum of

O(N2) is still an open question. The AM2 algorithm presented here comes very close to this limit.

The AM2 algorithm presented here, is a modification of the earlier AM algorithm, made by using a

scaling technique. Before proceeding, it is useful to look at a summary of the AM algorithm itself.

A summary of the earlier AM algorithm (Augmented matrix algorithm)

The AM algorithm presented earlier [Patwardhan, 2022a], is based on three geometrical

observations, which are described below:

1. The first observation concerns the application of the steepest descent (SD) method for solving a

NxN system of linear equations. It is well known that the steepest descent method leads to a fast

approach to the solution (i.e., gives rapid reduction in residuals) in the first few steps and slows

down substantially in the following steps. There are two possible ways of avoiding this slow

down [Patwardhan, 2022b], i.e., random movement of the point between iterations, and

possible matrix transformations between iterations. It was shown that these approaches can

increase the speed of convergence of the steepest descent method by several orders of

magnitude.

2. The second observation concerns the geometry of the intersecting hyperplanes representing a

NxN system of linear equations. It has been shown earlier [Patwardhan, 2022c] that, in a large

dimensional space defined by a NxN system of linear equations with large N, several directions

exist which are almost orthogonal to all the rows of the matrix. Using one or more of these

directions to get a new equation (i.e., an augmented matrix), it is possible to change the

orientation of the ellipsoids of the sum of squares of the residuals significantly. This makes it

3

possible to use the SD method alternately with the original and the augmented matrices, to

achieve good convergence to the solution.

3. The third observation concerns the effect of adding a new, consistent equation to the system of

linear algebraic equations, i.e. A0x = b0 repeatedly, on eigenvalues and eigenvectors of matrix A.

Let the new equation be vTx = w. Let us assume that the solution s satisfies this equation, i.e., vTs

= w. (v can be one of the directions mentioned in the second observation. The choice of w is

described later.) If this equation is added k times to the linear system A0x = b0, we get an

augmented system with a [(N+k) x N] coefficient matrix and a [(N+k) x 1] right hand side. This

system can be converted to a symmetric positive definite system Akx = bk where

 Ak = (A0
TA0 + kvvT) and bk = A0

Tb0 + kwv (1)

For a large enough value of k, (i) v becomes the eigenvector of Ak corresponding to the largest

eigenvalue (which is equal to k itself), and (ii) both the systems, i.e., A0x = b0 and Akx = bk, have

the same solution s., provided vTs = w. From a geometrical viewpoint, the SSres contours change

orientation as k increases, while the solution s remains unchanged. The parameter k is a

selectable parameter.

A key point is the appropriate choice of w. For a given vector v, the ideal choice of w is vTs. However,

since s is not known at the beginning, the algorithm starts with a trial value of w, which gets updated

at each iteration.

A brief outline of the AM algorithm

We start with two points q1 and q2 which define a line that points approximately towards the

solution (the computation of q1 and q2 is described below.) The direction v given by q1 and q2 is used

to get a trial solution s, and a new equation passing through the trial solution, using w = vTs. The

original system of equations, i.e. A0x = b0, is converted into two (NxN) symmetric positive definite

systems, i.e., Ax = b and Akx = bk using equation (1). The point q1 is adjusted by taking a fixed number

of SD steps with the two systems of equations alternately. The point q2 is also adjusted similarly. The

adjusted points are used to get an improved direction v, a new trial solution solution, and a new

value of w. This is done iteratively till the SSres at the approximate solution point becomes acceptably

low, or the iteration count exceeds a set maximum value.

The AM algorithm in detail

__

Given: N, A0, and b0

Selectable parameters: k, n1, n2, m1, m2

Initial calculations

1 Calculate A (= A0
TA0) and b (= A0

Tb0)

2 Get two random vectors z1 and z2 with elements N(0,1)

3 Normalize z1 and z2

4 Set p1 = z1

5 Get q1,0 by applying m1 steepest descent steps to p1, using A and b

4

6 Calculate d = distance p1 - q1,0

7 Set p2 = q1,0 + m2 d z2

8 Get q2,0 by applying m1 steepest descent steps to p2, using A and b

9 Get v0 = q1,0 - q2,0

10 Get s0, the point which minimizes SSres along the line v0 drawn through q2,0

Iterative calculations

11 Set i = 1

12 While σres > σres,crit , do

13 Set w1,i = vi-1
Tsi-1

14 Set w2,i = vi-1
Tq2,i-1

15 Calculate Ak,i = (A0
TA0 + kvvT)

16 Calculate bk,i = A0
Tb0 + kw1,iv

17 For j = 1 to n1

18 Adjust q1,i-1 by applying n2 SD steps with Ak,i and bk,i

19 Adjust q1,i-1 further by applying n2 SD steps with A and b

20 Next j

21 Set q1,i = q1,i-1

22 Calculate bk,i = A0
Tb0 + kw2,iv

23 For j = 1 to n1

24 Adjust q2,i-1 by applying n2 SD steps with Ak,i and bk,i

25 Adjust q2,i-1 further by applying n2 SD steps with A and b

26 Next j

27 Set q2,i = q2,i-1

28 Calculate vi = q2,i - q1,I

29 Get si, the point which minimizes SSres along the line vi drawn through q2,i

30 i = i + 1

31 End while

__

At the end of initial calculations (step 10) the AM algorithm comes up with q1,0 , q2,0 , v0 and s0. These

are then improved iteratively through steps 11-31. Steps 13 and 14 are aimed at keeping q2,i as an

anchor, away from the solution, while pushing q1,i towards the solution, which makes the direction vi

more accurate as iterations proceed.

The AM algorithm was tested earlier with two sets of problems. (1) Forty problems were selected

from the SuiteSparse collection and solved using the AM algorithm. Twenty-seven of these were

solved satisfactorily. For the others, residuals did not get reduced below the critical value even after

50 iterations, and the solution was not approached closely. The matrices for these 40 problems were

very ill-conditioned, with the condition numbers covering a range of 130 to 2.31x1018. The details of

these calculations are available [Patwardhan, 2022a]. (2) Randomly generated problems with a

problem size up to N = 1000, were solved satisfactorily and gave a very close approach to the

solution. The algorithm gave a time complexity of O(N2.2).

5

The AM2 algorithm

The results obtained with the AM algorithm indicate that the performance can be improved if the

conditioning of the coefficient matrix can be improved. This can be achieved by transforming the A0

matrix by using a pre-multiplier and a post-multiplier to get a transformed system of equations. The

original system A0x = b0 can be written as A1y = b1 where A1 = αA0β, b1 = αb0 and y = β-1x, where α

and β are appropriately selected diagonal matrices. The matrix β essentially represents a diagonal

scaling of the x variables which changes the condition number of the coefficient matrix. If the system

A1y = b1 can be solved for y, then we can recover x, the solution of the original system (i.e., A0x = b0)

simply by using x = βy. These equations are valid for any arbitrary choice of α and β.

Selection of α and β:

The easiest way to get rid of large numbers in the coefficient matrix is to normalize all rows of A0,

which is equivalent to normalizing each equation in the system A0x = b0. Taking this further, is it

possible to simultaneously normalize the columns of A0 as well?

Consider a matrix Asq whose entries are squares of corresponding entries of A0, and therefore are

nonnegative. If A0 can be put in a form where all its rows as well as columns are normalized (i.e.,

their Euclidian norm is 1), then the corresponding Asq matrix would be double stochastic (i.e., each

row as well as each column would add up to 1). A simple iterative method to get the double

stochastic matrix is to alternately rescale all rows and all columns of Asq to sum to 1. This is the well-

known Sinkhorn and Knopp algorithm [Sinkhorn and Knopp, 1967]. This algorithm can be shown to

converge to the double stochastic form, if the matrix has support, i.e., it contains at least one

diagonal with only positive elements. This condition is satisfied if the matrix is invertible. The final

double stochastic form can be transformed to the final form of A0 just by taking square roots of

corresponding entries in Asq, keeping the sign of each entry as in the original A0. Alternately, row and

column normalization (using the Euclidian norm) can be applied to the original A0 repeatedly to get

the final form. It may be noted that converting Asq to the double stochastic form is computationally

more efficient than converting A0 by repeated normalization of rows and columns, as the latter

involves squaring entries at each iteration. However, this choice is not important, because

calculations show that the time taken for double normalization is negligible compared to the total

time taken by the AM2 algorithm.

Double normalisation (i.e., normalisation of rows as well as columns) is an idea that is used widely in

data analysis in various fields (for example, see Olshen and Rajaratnam [2010]). Many mathematical

libraries provide standard callable procedures for double normalization using different norms such

as maximum entry, sum of absolute values etc, as well as the Euclidian norm.

It is obvious that normalizing matrix rows can be represented as pre-multiplication by a diagonal

matrix, while normalizing matrix columns can be represented as post-multiplication by another

diagonal matrix. While normalizing rows and columns repeatedly, these diagonal matrices can be

collected at each step, and can be combined to get α and β. (The details of these calculations are

described in Appendix 1.) Let us now assume that α, β, A1 and b1 have been calculated from A0 and

b0. At this point, the AM algorithm described above can be applied to the system A1y = b1 to get the

solution y, and then the solution of the original system, A0x = b0, can be calculated using x = βy.

6

The AM2 algorithm thus involves (1) normalization of the rows as well as columns of the A0 matrix

and (2) subsequent application of the AM algorithm presented earlier. The following sections

describe the numerical results obtained with the AM2 algorithm, using two different sets of

problems: (1) problems selected from the SuiteSparse collection of matrices, and (2) randomly

generated test problems. The results are also compared with the results of the AM algorithm (which

does not involve double normalization).

Results using problems from the SuiteSparse collection

Huge matrices that arise in practical applications in areas such as optimization, chemical process

simulation, structural engineering, computational fluid dynamics etc. are highly sparse, and often

have a very high condition number, which can make computations very time consuming.

The SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Matrix

Collection), is a large and actively growing set of sparse matrices that arise in real applications

[Davies and Hu, 2011]. The Collection is widely used for the development and performance

evaluation of sparse matrix algorithms. It allows for robust and repeatable experiments, since the

matrices are from real life applications, and are publicly available in many formats.

The AM2 algorithm described above, was used for solving a set of selected test problems from the

SuiteSparse collection. Computational results obtained are described below.

Problem selection:

Several problems were selected from the SuiteSparse collection, from the areas of chemical process

simulation and computational fluid dynamics, with N < 1000, to keep the computation time

reasonable. The condition numbers of the selected matrices, as reported in the SuiteSparse

collection, covered a wide range of 130 to 2.31x1018. The problems selected are summarised in Table

1. Totally 40 problems were selected.

The problems listed in Table 1 cover a range of N up to 1000, and have a very high sparsity, as

indicated by the number of non-zero elements per row. The condition numbers cover a very wide

range of 130 to 2.31x1018. Most of the matrices did not have a right-hand side. To test the AM2

algorithm (which aims to solve linear equations), right-hand sides had to be generated. For this

purpose, a point was generated in a random direction, 100 units away from the origin, and was

taken as the solution s. The right-hand side was then generated using this solution, as b0 = A0s. (The

solution s was used only for generating the right-hand side and was completely ignored while solving

the system of equations using the AM2 algorithm.) A point 10 units away from the origin, in a

random direction, was taken as the starting point for the AM2 algorithm.

Computational results:

The parameter values selected were k = 30, m1 = 20, m2 = 10, n1 = 40 and n2 = 20. The maximum

number of iterations permitted was fixed at 50. The AM2 algorithm was applied to the system A0x =

b0. The progress of iterations was monitored by (1) calculating σRes (i.e., the root mean square of the

7

No.
Problem

Name
N

Non-zero
elements

Non-zero
elements
per row

Condition
number

1 pores_1.mtx 30 180 6 1.81E+06

2 d_ss.mtx 53 149 2.8 6.14E+08

3 impcol_b.mtx 59 312 5.2 1.64E+05

4 west0067.mtx 67 294 4.3 1.30E+02

5 steam3.mtx 80 928 11.6 4.99E+10

6 d_dyn.mtx 87 238 2.7 7.42E+06

7 d_dyn1.mtx 87 238 2.7 7.43E+06

8 tols90.mtx 90 1746 19.4 2.02E+04

9 olm100.mtx 100 396 3.9 1.53E+04

10 tub100.mtx 100 396 3.9 1.33E+04

11 lns_131.mtx 131 536 4 1.28E+15

12 lnsp_131.mtx 131 536 4 1.28E+15

13 west0132.mtx 132 414 3.1 4.21E+11

14 impcol_c.mtx 137 411 3 1.77E+04

15 west0156.mtx 156 371 2.3 2.31E+18

16 west0167.mtx 167 507 3 4.79E+10

17 bwm200.mtx 200 796 3.9 2.41E+03

18 rdb200.mtx 200 1120 5.6 3.45E+02

19 rdb200l.mtx 200 1120 5.6 1.33E+02

20 impcol_a.mtx 207 572 2.7 1.35E+08

21 ex1.mtx 216 4352 20.1 3.30E+04

22 impcol_e.mtx 225 1308 5.8 7.10E+06

23 saylr1.mtx 238 1128 4.7 7.78E+08

24 steam1.mtx 240 3762 15.6 2.83E+07

25 tols340.mtx 340 2196 6.4 2.03E+05

26 poisson2D.mtx 367 2417 6.5 1.33E+02

27 impcol_d.mtx 425 1339 3.1 2.06E+03

28 ex2.mtx 441 13640 30.9 1.03E+10

29 rdb450.mtx 450 2580 5.7 6.85E+02

30 rdb450l.mtx 450 2580 5.7 2.10E+02

31 olm500.mtx 500 1996 3.9 3.73E+05

32 pores_3.mtx 532 3474 6.5 5.61E+05

33 steam2.mtx 600 13760 22.9 3.78E+06

34 ex21.mtx 656 19144 29.1 5.68E+08

35 rdb800l.mtx 800 4640 5.8 3.23E+02

36 ex22.mtx 839 22715 27 3.28E+04

37 ex25.mtx 848 24612 29 5.11E+07

38 orsirr_2.mtx 886 5970 6.7 6.33E+04

39 DK01R.mtx 903 11766 13 5.89E+07

40 rdb968.mtx 968 5632 5.8 3.78E+02

Table 1. Problems selected from the SuiteSparse collection

residuals, Ri for the current y), and (2) calculating current x from current y to get the deviations (xi -

si). The iterations were terminated when σRes became smaller than a critical value (which was

selected as 0.0001). The final point was characterised by calculating σΔx (i.e., the root mean square

value of the deviations (xi - si) for the system A0x = b0, for i = 1 to N).

8

No. Problem name N Nnz
Iter

reqd.
Run time,
reduced

σRes σΔx

1 pores_1.mtx 30 180 5 0.108 2.85E-09 6.73E-07

2 d_ss.mtx 53 149 5 0.115 3.22E-08 2.24E-07

3 impcol_b.mtx 59 312 3 0.231 3.98E-13 7.52E-11

4 west0067.mtx 67 294 3 0.114 9.40E-07 1.45E-05

5 steam3.mtx 80 928 1 0.081 1.01E-09 9.57E-07

6 d_dyn.mtx 87 238 1 0.030 7.45E-11 1.22E-10

7 d_dyn1.mtx 87 238 2 0.057 2.03E-13 1.32E-12

8 tols90.mtx 90 1746 1 0.122 6.33E-15 1.82E-14

9 olm100.mtx 100 396 5 0.191 8.10E-07 1.79E-04

10 tub100.mtx 100 396 40 1.552 8.55E-07 8.61E-04

11 lns_131.mtx 131 536 3 0.159 6.54E-08 1.92E-05

12 lnsp_131.mtx 131 536 1 0.052 8.03E-07 7.43E-05

13 west0132.mtx 132 414 5 0.214 1.16E-09 3.39E-08

14 impcol_c.mtx 137 411 2 0.086 3.34E-08 2.69E-07

15 west0156.mtx 156 371 2 0.088 1.02E-07 3.80E-01

16 west0167.mtx 167 507 4 0.209 2.24E-10 3.42E-09

17 bwm200.mtx 200 796 28 2.067 9.67E-07 8.09E-04

18 rdb200.mtx 200 1120 4 0.370 6.47E-07 9.35E-06

19 rdb200l.mtx 200 1120 3 0.278 7.73E-08 6.77E-07

20 impcol_a.mtx 207 572 4 0.252 4.58E-08 6.49E-06

21 ex1.mtx 216 4352 1 0.295 7.90E-13 9.25E-11

22 impcol_e.mtx 225 1308 1 0.109 8.04E-11 2.35E-09

23 saylr1.mtx 238 1128 50 4.978 1.39E-04 4.14E+01

24 steam1.mtx 240 3762 1 0.257 6.59E-15 1.22E-11

25 tols340.mtx 340 2196 1 0.178 9.70E-15 1.14E-14

26 poisson2D.mtx 367 2417 4 0.770 1.27E-08 2.69E-07

27 impcol_d.mtx 425 1339 5 0.680 2.65E-09 9.56E-08

28 ex2.mtx 441 13640 5 4.249 1.23E-09 6.08E-08

29 rdb450.mtx 450 2580 8 1.694 8.70E-07 1.73E-04

30 rdb450l.mtx 450 2580 4 0.846 5.57E-08 3.24E-06

31 olm500.mtx 500 1996 50 9.186 5.26E-04 4.38E+00

32 pores_3.mtx 532 3474 50 13.823 1.79E-04 1.69E+01

33 steam2.mtx 600 13760 1 0.882 2.72E-15 3.29E-11

34 ex21.mtx 656 19144 4 4.788 6.14E-08 1.47E-03

35 rdb800l.mtx 800 4640 5 1.880 1.41E-07 1.52E-05

36 ex22.mtx 839 22715 4 5.696 8.01E-08 2.59E-06

37 ex25.mtx 848 24612 5 9.896 8.23E-08 1.62E-04

38 orsirr_2.mtx 886 5970 50 29.409 6.85E-05 2.92E-01

39 DK01R.mtx 903 11766 6 4.898 3.68E-08 2.55E-04

40 rdb968.mtx 968 5632 5 2.474 6.09E-07 7.58E-05

Table 2. Computational results with the AM2 algorithm for problems selected from

 The SuiteSparse collection (N <= 1000)

The run time, in seconds, of any algorithm depends not only on the algorithm itself, but other factors

such as the computer speed, the coding language, the development environment used etc. In order

to eliminate the effect of these external factors, a reference run time Tref was obtained for a

standard procedure, and the run times obtained for different problems were normalised by dividing

by Tref to get a run time ratio. The standard procedure selected was the solution of a dense random

9

 Figure 1. Run time ratio vs. Nnz for different SuiteSparse problems.

 Figure 2. A comparison of approach to the solution with/without double normalization

square matrix of dimension 1000 by using Gaussian elimination. This way, the run time ratios

reported here should be reproducible on other computer systems.

y = 0.001x0.8339

0.01

0.10

1.00

10.00

100 1000 10000 100000

R
u

n
 t

im
e

 r
at

io

Nnz

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E-13 1.0E-11 1.0E-09 1.0E-07 1.0E-05 1.0E-03 1.0E-01 1.0E+01 1.0E+03 1.0E+05

d
So

ln
, A

M
2

dSoln, AM

10

Table 2 shows the computational results obtained with the AM2 algorithm for the problems listed in

Table 1. It is seen that 36 of the 40 problems gave convergence in less than 50 iterations, and thus

were solved very well by the AM2 algorithm. For these problems, the AM2 algorithm rapidly

approaches the solution, often in just a few iterations. The average deviation in solution coordinates

is less than 0.01, and the average number of iterations required is 5. For the 4 problems (problem

numbers 23, 31, 32 and 38 in Table 2) which are not solved within 50 iterations, the average

deviation in solution coordinates is 15.73. For these problems, the speed of approaching the solution

becomes too low after some point. It may be noted that the AM2 algorithm does not make use of

any explicit preconditioners. For these four problems, preconditioners may have to be used. The

reduced run time for the 36 problems is shown in Figure 1 against Nnz, the number of nonzero

elements. The time complexity is seen to be O(Nnz0.83). It may be noted here that Nnz is used instead

of N, because the computation procedure uses sparse matrix routines, whose computation time is

related to Nnz, and not N. For dense matrices, Nnz = N2, while for sparse matrices, Nnz << N2, as

seen in Table 1.

It has been mentioned earlier that the AM2 algorithm consists of double normalization followed by

the AM algorithm. It is interesting to see the effect of the double normalization on the results. It may

be noted that dsoln, i.e., the distance between the approximate and the exact solutions, is equal to

σΔx(N)0.5. Figure 2 shows dsoln,AM2 and dsoln,AM, i.e., the dsoln values for the AM2 and the AM algorithms

respectively, for the 36 SuiteSparse problems. The line represents equality of the two values. It is

seen that the AM2 algorithm approaches the solution much more closely than the AM algorithm.

This is the result of the double normalization.

It is interesting to see some results obtained during the double normalization of the A0 matrix. The

detailed procedure for double normalization is shown in Appendix 1. Table 3 shows a summary of

the elements of β matrices obtained for selected SuiteSparse problems. The elements of β vary

between 1.66x10-5 and 1.04x107, which is a very wide range. It has been mentioned earlier that the β

values represent scaling of the x-variables in the original problem. These β values indicate a very

strong scaling which is a result of the double normalization procedure. This is the reason for the

superior performance of the AM2 algorithm over the AM algorithm. The wide range of β values is

related to the very high condition numbers of the SuiteSparse problems. The average number of

iterations taken by the double normalization procedure is 25. These results are quite in contrast to

similar results presented later for randomly generated problems.

The test problems considered so far were those selected from the SuiteSparse collection. It is

interesting to examine similar results obtained for randomly generated problems involving gaussian

matrices.

Results using randomly generated test problems

Randomly generated test problems have certain properties arising out of the random procedure

used for generating these, and the computational results obtained may be different from those

presented above for the SuiteSparse problems. However, it is interesting to see the results obtained

with randomly generated problems.

11

No. fName N Nnz β Max β Min β Ratio
Iter-

ations

1 pores_1.mtx 30 180 4.17E+02 1.31E-01 3.15E-04 14

2 d_ss.mtx 53 149 1.81E+01 9.71E-03 5.37E-04 26

3 impcol_b.mtx 59 312 5.73E+01 1.92E-02 3.35E-04 43

4 west0067.mtx 67 294 7.93E+00 4.56E-01 5.75E-02 11

5 steam3.mtx 80 928 4.56E+03 2.83E-01 6.19E-05 19

6 d_dyn.mtx 87 238 1.84E+01 1.21E-03 6.55E-05 38

7 d_dyn1.mtx 87 238 6.22E+01 8.25E-04 1.33E-05 47

8 tols90.mtx 90 1746 3.49E+00 8.02E-01 2.30E-01 2

9 olm100.mtx 100 396 1.92E+00 6.23E-01 3.24E-01 7

10 tub100.mtx 100 396 1.24E+00 8.72E-01 7.02E-01 1

11 lns_131.mtx 131 536 3.77E+02 1.19E-03 3.16E-06 47

12 lnsp_131.mtx 131 536 3.77E+02 1.19E-03 3.16E-06 47

13 west0132.mtx 132 414 3.24E+03 1.45E-04 4.49E-08 74

14 impcol_c.mtx 137 411 2.24E+01 4.77E-02 2.13E-03 46

15 west0156.mtx 156 371 1.04E+07 1.30E-03 1.26E-10 68

16 west0167.mtx 167 507 3.67E+03 2.82E-04 7.67E-08 62

17 bwm200.mtx 200 796 1.02E+00 9.83E-01 9.67E-01 1

18 rdb200.mtx 200 1120 1.45E+00 7.78E-01 5.36E-01 4

19 rdb200l.mtx 200 1120 1.27E+00 8.50E-01 6.67E-01 1

20 impcol_a.mtx 207 572 1.01E+04 5.61E-04 5.53E-08 81

21 ex1.mtx 216 4352 6.41E+01 4.29E-01 6.69E-03 11

22 impcol_e.mtx 225 1308 4.85E+03 9.03E-03 1.86E-06 69

23 saylr1.mtx 238 1128 3.17E+00 4.60E-01 1.45E-01 12

24 steam1.mtx 240 3762 1.80E+03 4.77E-01 2.65E-04 3

25 tols340.mtx 340 2196 2.67E+00 8.65E-01 3.24E-01 1

26 poisson2D.mtx 367 2417 1.01E+00 9.70E-01 9.57E-01 1

27 impcol_d.mtx 425 1339 1.23E+01 2.55E-02 2.08E-03 51

28 ex2.mtx 441 13640 9.85E+06 1.66E-05 1.68E-12 100

29 rdb450.mtx 450 2580 1.17E+00 8.82E-01 7.57E-01 7

30 rdb450l.mtx 450 2580 1.95E+00 7.50E-01 3.84E-01 2

31 olm500.mtx 500 1996 1.89E+00 6.29E-01 3.32E-01 7

32 pores_3.mtx 532 3474 5.91E+01 1.37E-01 2.31E-03 18

33 steam2.mtx 600 13760 4.37E+03 3.09E-01 7.06E-05 18

34 ex21.mtx 656 19144 5.55E+02 4.23E-02 7.62E-05 13

35 rdb800l.mtx 800 4640 1.52E+00 7.69E-01 5.05E-01 4

36 ex22.mtx 839 22715 2.71E+01 2.44E-01 8.99E-03 6

37 ex25.mtx 848 24612 1.42E+03 9.48E-02 6.67E-05 9

38 orsirr_2.mtx 886 5970 1.28E+00 8.57E-01 6.70E-01 3

39 DK01R.mtx 903 11766 6.19E+03 6.35E-02 1.02E-05 18

40 rdb968.mtx 968 5632 1.40E+00 7.86E-01 5.60E-01 5

Table 3. A summary of β values for SuiteSparse matrices (N upto 1000)

Problem generation:

Random problems were generated such that (1) the solution point s was at a fixed distance from the

origin, but in a random direction, (2) the entries in the coefficient matrix A0 were generated as

12

No. N σRes σΔx
Run time

ratio
iterations
required

1 10 1.1E-05 3.41E-05 0.004038 1.0

2 14 6.07E-06 8.6E-05 0.007279 1.6

3 20 1.66E-05 0.000263 0.013062 1.8

4 32 4.31E-05 0.001187 0.032457 2.8

5 50 1.61E-05 0.00031 0.057883 2.6

6 70 4.96E-05 0.091657 0.089442 2.2

7 100 2.25E-05 0.001454 0.214981 2.8

8 140 5.45E-05 0.011221 0.608348 4.0

9 200 6.72E-05 0.024496 1.401912 4.8

10 320 7.07E-05 0.023607 2.646428 3.2

11 500 7.68E-05 0.011599 10.9888 5.0

12 700 8.82E-05 0.018434 23.82379 5.2

13 1000 8.28E-05 0.018607 58.41226 6.2

Table 4. Computational results obtained for randomly generated
 Problems, N = 10-1000 (average of 5 problems for each N)

N(0,1), and then each row of A0 was normalized. The b0 vector was generated as b0 = A0s. The

solution point s was used only for generating the right-hand side and was never used while solving

the resulting system of equations (i.e., A0x = b0) using the AM2 algorithm. The details of this

procedure were described earlier [Patwardhan, 2022c]. N was varied from 10 to 1000 using 13

values of N which were almost uniformly spaced on a logarithmic scale.

Computational results:

The parameter values selected were k = 4, m1 = 20, m2 = 5, n1 = 10 and n2 = 20. The AM2 algorithm

was applied to the system A0x = b0. The origin was taken as the starting point. During the iterative

calculations, the known solution point was used only for characterising the successive iterates as

stated above and was completely ignored in the solution process. The algorithm was tested for N =

10 to 1000. For each N, five different problems were generated independently. The running time

refers only to the time taken for calculating the solution, and excludes the time taken for reading or

generating the problem data.

The computational results obtained with these randomly generated problems are shown in Table 4.

Figure 3 shows a log-log plot of run time ratio vs. problem size N. Figure 4 shows a similar plot of the

number of iterations required vs. problem size N. Table 5 shows results obtained during double

normalization.

It is seen from Table 4 that all the problems were solved successfully, with the final σRes less than

0.0001. The σΔx values increase somewhat with N, but even for N = 1000, all coordinates of s get

calculated within about 0.02 or so. It also shows that as N goes from 10 to 1000, the number of

iterations increase only from 1 to 6.2. In other words, for a 100-fold increase in N, the number of

iterations increases only 6 times or so. Figure 3 shows that the time complexity of the AM2

13

Figure 3. Run time ratio vs. N for randomly generated problems

 Figure 4. No. of iterations required for different problem sizes (N)

y = 2.0E-05 x2.0766

0.001

0.01

0.1

1

10

100

10 100 1000

R
u

n
 t

im
e

 r
at

io

Problem size, N

y = 0.653 x0.3275

1

10

10 100 1000

N
o

. o
f

it
e

ra
ti

o
n

s

Problem size, N

14

No. N β Max β Min β Ratio
Iter-

ations

1 10 1.69 0.70 0.43 2.6

2 14 1.39 0.75 0.55 2.2

3 20 1.41 0.79 0.59 2.0

4 32 1.40 0.81 0.58 2.0

5 50 1.36 0.80 0.59 1.8

6 70 1.21 0.84 0.70 1.4

7 100 1.21 0.85 0.70 1.0

8 140 1.19 0.88 0.74 1.0

9 200 1.15 0.87 0.76 1.0

10 320 1.11 0.88 0.80 1.0

11 500 1.10 0.91 0.83 1.0

12 700 1.09 0.92 0.85 1.0

13 1000 1.08 0.93 0.86 1.0

Table 5. A summary of β for randomly generated problems,

 N = 10-1000 (Average of 5 problems for each N)

algorithm is about O(N2.08). This is better than computational complexities reported so far and is

surprisingly close to the theoretical limit of 2.0. Figure 4 shows that the number of iterations

increase very slowly with N, and show a dependence of O(N0.3) or so.

It is interesting to see some results obtained during the double normalization of the A0 matrix. The

detailed procedure for double normalization is shown in Appendix 1. Table 5 shows a summary of

the elements of β matrices obtained for randomly generated problems. The elements of β vary

between 0.7 and 1.69, which is a narrow range close to 1 (in contrast to the very large range

presented above for the SuiteSparse problems). It appears that since the matrices themselves are

generated at random, it does not take much correction to achieve normalization of both rows and

columns, and it takes only a few iterations to achieve it. This is in contrast with the large number of

iterations required for SuiteSparse matrices, as presented above.

Discussion

Problems from the SuiteSparse collection:

The condition numbers for the 40 problems selected from the SuiteSparse collection were in the

very wide range of 130 to 2.31x1018. These represent very elongated ellipsoids as the quadratic SSres

surfaces. The AM2 algorithm essentially takes steepest descent steps alternately with the original

and the augmented matrix systems. It approaches the solution closely in most of the cases and

solves 36 of the 40 problems very well. However, for the remaining 4 problems, it gets stuck at a

point quite far away from the solution. The average dsoln for the 36 problems is 0.13, while that for

the 4 problems is 283.5! (Out of the 36 problems, problem no. 15 has dsoln = 4.75, which is high

despite the good convergence in two steps. If this point is left out, the average dsoln for the 35

problems is 0.0023, which is much better.) This can be interpreted in terms of the geometry of the N

hyperplanes. The 4 problems give approximate solution points which have small residual values from

15

No. Problem Name N
dSoln,

RHS=0
dSoln,

RHS=b0

1 pores_1.mtx 30 1.09E-05 3.69E-06

2 d_ss.mtx 53 4.38E-06 1.63E-06

3 impcol_b.mtx 59 1.57E-05 5.77E-10

4 west0067.mtx 67 3.58E-05 1.19E-04

5 steam3.mtx 80 1.63E-05 8.56E-06

6 d_dyn.mtx 87 1.15E-13 1.14E-09

7 d_dyn1.mtx 87 5.25E-06 1.23E-11

8 tols90.mtx 90 1.17E-26 1.72E-13

9 olm100.mtx 100 2.46E-05 1.79E-03

10 tub100.mtx 100 5.83E-03 8.61E-03

11 lns_131.mtx 131 2.03E-04 2.20E-04

12 lnsp_131.mtx 131 4.82E-07 8.50E-04

13 west0132.mtx 132 7.87E-06 3.89E-07

14 impcol_c.mtx 137 1.31E-05 3.15E-06

15 west0156.mtx 156 1.09E+01 4.75E+00

16 west0167.mtx 167 3.68E-06 4.42E-08

17 bwm200.mtx 200 7.73E-03 1.14E-02

18 rdb200.mtx 200 3.05E-04 1.32E-04

19 rdb200l.mtx 200 5.89E-04 9.58E-06

20 impcol_a.mtx 207 1.50E-06 9.34E-05

21 ex1.mtx 216 2.21E-11 1.36E-09

22 impcol_e.mtx 225 3.14E-10 3.52E-08

23 saylr1.mtx 238 6.49E+01 6.38E+02

24 steam1.mtx 240 5.07E-22 1.89E-10

25 tols340.mtx 340 2.79E-22 2.11E-13

26 poisson2D.mtx 367 6.30E-06 5.16E-06

27 impcol_d.mtx 425 2.00E-06 1.97E-06

28 ex2.mtx 441 1.20E-05 1.28E-06

29 rdb450.mtx 450 1.24E-03 3.66E-03

30 rdb450l.mtx 450 1.97E-05 6.87E-05

31 olm500.mtx 500 4.14E+01 9.79E+01

32 pores_3.mtx 532 5.55E+01 3.89E+02

33 steam2.mtx 600 1.31E-59 8.05E-10

34 ex21.mtx 656 5.85E-03 3.78E-02

35 rdb800l.mtx 800 1.45E-04 4.29E-04

36 ex22.mtx 839 2.73E-05 7.49E-05

37 ex25.mtx 848 2.66E-05 4.73E-03

38 orsirr_2.mtx 886 2.67E-01 8.68E+00

39 DK01R.mtx 903 2.25E-02 7.67E-03

40 rdb968.mtx 968 3.08E-03 2.36E-03

Table 6. dsoln with the AM2 algorithm, with original b0,
 and with b0 = 0

the N equations, even though they are far away from the exact solution. This means the cone made

by the hyperplanes (with its apex at s) which contains the approximate solution point is extremely

sharp. This is a geometrical characteristic of the N hyperplanes which prevents good convergence.

16

 Figure 5. dsoln with the AM2 algorithm for SuiteSparse problems, with RHS = b0, and with RHS = 0

This brings us to an important question. In this study, we have characterised the final solution point

in terms of the residuals, as well as in terms of its distance from the exact solution. However, when

we solve a new practical problem with the AM2 algorithm, we will get the approximate solution

based on the reduction of σRes below a critical value. However, the exact solution will be unknown! In

such a situation, it is possible to get some idea about dsoln? It has been argued that the ease (or

otherwise) of convergence of the AM2 algorithm is related to the geometrical structure of the

system of equations (i.e., the N hyperplanes) itself. If we change the right-hand side, i.e., b0 in the

system of equations A0x = b0, without changing A0, then the geometrical characteristics of the

hyperplanes would remain unchanged. Changing b0 is equivalent to a translation of the hyperplanes

to a new position, without changing their orientations. This changes the solution point, but the

convergence behaviour of the AM2 algorithm remains unchanged. Let us change the right-hand side

to zero, and consider the homogeneous system A0x = 0, where 0 is a vector of zeros. This system has

the origin itself as the solution, i.e., s = 0. Solving this system with the AM2 algorithm will give us the

approximate solution (obtained by reducing σRes to a value smaller than a critical value, subject to

the maximum limit on the number of iterations). Let dsoln,0 be the distance between the approximate

and the exact solution for this homogeneous system. Now we can calculate dsoln,0 since we know s!

All the 40 SuiteSparse problems selected were solved using this approach, and the dsoln,0 values

obtained are shown in Table 6 along with the dsoln values obtained for the original problems. Figure 5

shows these values graphically.

It is seen from figure 5 that the dsoln and dsoln,0 vary monotonically. The five points inside the dashed

ellipse show that when the dsoln,0 is high, the dsoln values are also high (i.e., 0.3 to 1000). On the other

hand, for all the other points, both dsoln,0 and dsoln values are small, less than 0.02 or so. This gives us

a way of estimating the accuracy of the approximate solution of a new problem (given by A0x = b0)

1.0E-15

1.0E-12

1.0E-09

1.0E-06

1.0E-03

1.0E+00

1.0E+03

1.0E-28 1.0E-24 1.0E-20 1.0E-16 1.0E-12 1.0E-08 1.0E-04 1.0E+00 1.0E+04

d
So

ln
 w

it
h

 A
M

2
, R

H
S=

b
0

dSoln with AM2, RHS=0

17

obtained by using the AM2 algorithm. All we need to do is to solve the corresponding homogeneous

system, i.e., A0x = 0, to get the approximate solution with the AM2 algorithm, and get dsoln,0, which is

just the distance between the approximate solution and the origin (which is the exact solution of the

homogeneous system). If dsoln,0 is small enough, then the approximate solution of A0x = b0 will also

be close enough to s. However, if dsoln,0 is rather large, then the approximate solution of A0x = b0 will

not be very accurate, and some other approach such as using a preconditioner needs to be

considered, if a greater accuracy is required. Many times, the solution obtained by reducing σRes

below a critical value, may be quite acceptable in practice, though dsoln may not be too small.

Randomly generated problems:

The results presented in Table 4 and Figures 3 and 4 indicate that the AM2 algorithm successfully

solved all the 65 randomly generated problems with N ≤ 1000. The final solution given by the AM2

algorithm was very close to the actual solution. The approach to the solution was fast, and the

algorithm took just a few iterations. The number of iterations was found to have only a weak

dependence on the problem size. The overall time complexity was found to be in O(N2.08), which is

very attractive, and compares very closely with the theoretical minimum of O(N2). The number of

iterations shows a weak dependence on problem size, as seen in Figure 4. Table 5 shows that the β

values obtained in double normalization cover a rather narrow range of 0.70 to 1.69. (In contrast,

the β values for SuiteSparse problems cover a very wide range of 1.66x10-5 to 1.04x107.) It is obvious

that the matrices, generated at random, do not need much effort to achieve normalization of both

rows and columns, and it takes only a few iterations to achieve it. If these problems are solved with

the AM algorithm instead of the AM2 algorithm, the results are not significantly different, and are

not presented here, for the sake of brevity.

The computation time complexity for the SuiteSparse problems is O(Nnz0.83), and that for randomly

generated dense problems is O(N2.08). These are quite comparable since Nnz = N2 for dense matrices.

Conclusions

1. The AM2 algorithm presented here consists of double normalization of the coefficient matrix,

followed by the application of the AM algorithm presented earlier. The performance of the AM2

algorithm is shown to be much superior compared to that of the AM algorithm. Thus, double

normalization plays a very important role in the AM2 algorithm. Double normalization is shown

to be equivalent to scaling the variables. The AM2 algorithm solved most (36 out of 40) of the

problems selected from the SuiteSparse collection (up to N < 1000) successfully and gave a time

complexity of O(Nnz0.83), where Nnz is the number of nonzero elements. This low time

complexity makes the AM2 algorithm attractive for huge systems (N >> 1000).

2. The convergence criterion used by the AM2 algorithm consists of reduction of σRes below a

critical value. A procedure is suggested here for estimating the distance between the exact and

approximate solutions, which is based on solving a homogeneous system.

3. The AM2 algorithm was also used for solving randomly generated problems for N = 10 to 1000.

All 65 problems were solved successfully, and the approximate solution was found to be very

close to the exact solution. The time complexity was found to be in O(N2.08), which is almost the

same as the theoretical minimum of O(N2).

4. The scaling produced by the double normalization procedure was found to be severe for the

highly ill-conditioned SuiteSparse problems, while it was rather mild for the randomly generated

18

problems. Most of the computational effort of the AM2 algorithm is for matrix-vector

multiplications. Therefore, it can make full use of sparsity, and can be efficiently parallelized.

Nomenclature

A = A0
TA0

A0 the coefficient matrix in the system A0x = b0

A1 = αA0β, the matrix obtained by double normalization of A0

Ak = A0
TA0 + kvvT

Asq a matrix whose entries are squares of corresponding entries of A0

b = A0
Tb0

b0 the right-hand side in the system A0x = b0

b1 = αb0

bk = A0
Tb0 + kwv

d the distance p1 - q1,0

dsoln distance from the exact solution s

dsoln,0 distance from the origin

dsoln,AM dsoln obtained with the AM algorithm

dsoln,AM2 dsoln obtained with the AM2 algorithm

i iteration number

I the identity matrix

j loop variable

k number of times the new equation is added to the system of equations

n1, n2, m1, m2 parameters in the AM algorithm

N system size (the number of equations/unknowns)

Nnz number of nonzero elements in matrix A

p1 , p2 points appearing in the AM algorithm

q1 , q2 points appearing in the AM algorithm

R vector of residuals, = b0 - A0x, or = b1 - A1y

Ri Residual for the ith equation

s solution vector for the system A0x = b0

SSres sum of squares of the residuals

Tref run time for a standard procedure

v coefficient vector in the new equation, vTx = w

w right-hand side of the new equation, vTx = w

w1 , w2 defined in the AM algorithm (steps 13 and 14)

x the vector of unknowns

y = β-1x, the vector of transformed unknowns

z1 , z2 vectors with elements N(0,1)

0 a vector of zeros

α a diagonal matrix, obtained during double normalization of A0

β a diagonal scaling matrix, obtained during double normalization of A0

σres root mean square value of the residuals (= R)

σres,crit critical value of σres

19

σΔx root mean square value of the deviations (= x – s)

Subscripts

o initial values

i ith iteration

Superscripts

T transpose of a matrix

References

[1] Gentle, J. E.,
 Matrix Algebra - Theory, Computations, and Applications in Statistics
 Pub. Springer, New York, USA (2007)

[2] Shewchuk J. R.,
 An Introduction to the Conjugate Gradient Method
 https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (1994)

[3] Nesterov, Y.,
 A Method of Solving a Convex Programming Problem with Convergence Rate O(1/k^2)
 Soviet Mathematics Doklady, 27, 372-376 (1983)

[4] Sutskever I., Martens J., Dahl G., and Hinton G.,
 On the Importance of Initialization and Momentum in Deep Learning
 Proceedings of the 30th International Conference on Machine Learning,
 PMLR 28(3), 1139-1147 (2013)

[5] Strassen, V.
 Gaussian Elimination is not Optimal
 Numer. Math. 13 (4), 354–356 (1969)

[6] Coppersmith, D. and Winograd, S.
 Matrix multiplication via arithmetic progressions
 Journal of Symbolic Computation, 9(3): 251 (1990)

[7] Peng R. and Vempala S.
 Solving Sparse Linear Systems Faster than Matrix Multiplication
 arXiv:2007.10254 [cs.DS] (2021)

[8] Patwardhan V.,
 Solution of a NxN System of Linear Algebraic Equations: A New Algorithm with a Low Time
 Complexity
 doi: https://doi.org/10.13140/RG.2.2.12918.27204 (2022a)

[9] Patwardhan, V.,
 Solution of a NxN System of Linear algebraic Equations: 1 -- The Steepest Descent Method

 Revisited

https://doi.org/10.13140/RG.2.2.12918.27204

20

 https://doi.org/10.48550/arXiv.2206.07482 (2022b)

[10] Patwardhan V.,
 Some Geometrical Properties of a NxN System of Linear Equations
 doi: https://doi.org/10.13140/RG.2.2.27971.27687 (2022c)

[11] Sinkhorn, R. and Knopp, P.,
 Concerning nonnegative matrices and doubly stochastic matrices
 Pacific J. Math. 21, 343–348 (1967)

[12] Olshen R. A. and Rajaratnam B.,
 Successive Normalization of Rectangular Arrays
 Ann Stat., 38(3), 1638-1664 (2010)

[13] Davis T. A. and Yifan Hu.

 The University of Florida Sparse Matrix Collection

 ACM Transactions on Mathematical Software 38, 1, Article 1 (December 2011), 25 pages

 doi: https://doi.org/10.1145/2049662.2049663 (2011)

Appendix 1

It has been mentioned in the main text that the original system, A0x = b0 can be written as A1y = b1

where A1 = αA0β, b1 = αb0 and y = β-1x, where α and β are appropriately selected diagonal matrices.

The matrix β essentially represents a diagonal scaling of the x variables which changes the condition

number of the coefficient matrix.

Double normalization (i.e., repeated normalization of both rows and columns, alternately) eventually

gives a matrix whose rows as well as columns are normalized. Here we use the Euclidian norm for

normalization. In this appendix we describe how to calculate A1, α and β by using double

normalization in an iterative manner.

Let Mk be a (N x N) matrix, and αk and βk be diagonal (N x N) matrices, at the kth iteration. Let DR and

DC also be diagonal (N x N) matrices. At the beginning, we take M0 = A0, α0 = I and β0 = I, where I is

the identity matrix. In the kth iteration, we first normalize all rows and generate DR. Then we

normalize all columns and generate DC. Mk+1 also gets generated during these normalizations. Then

we update αk and βk using DR and DC to get αk+1 and βk+1. A convergence criterion is used to

terminate iterations.

The details of the calculations are given below:

Initial values: k=0, M0 = A0, α0 = I and β0 = I, SSdev = 1, SSdev,crit = 0.01

Do while SSdev > SSdev,crit

SSR(i) = ∑ [𝐌𝑘(𝑖, 𝑗)]2 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑁
𝑗=1

DR(i,j) = 1/[SSR(i)]0.5 for i = j

https://doi.org/10.48550/arXiv.2206.07482
https://doi.org/10.13140/RG.2.2.27971.27687
https://doi.org/10.1145/2049662.2049663

21

 = 0 otherwise

Mtemp = DR Mk

SSC(j) = ∑ [𝐌𝑡𝑒𝑚𝑝(𝑖, 𝑗)]
2

 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑁𝑁
𝑖=1

DC(i,j) = 1/[SSC(j)]0.5 for i = j
 = 0 otherwise

Mk+1 = Mtemp DC

αk+1 = αk DR

βk+1 = βk DC

SSR(i) = ∑ [𝐌𝑘+1(𝑖, 𝑗)]2 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑁
𝑗=1

SSdev = { ∑ 𝑎𝑏𝑠[𝑆𝑆𝑅(𝑖) − 1] 𝑁
𝑖=1 } / N

k = k+1

Loop

Final values: A1 = Mk+1, α = αk+1, β = βk+1
