Solution of a NxN System of Linear Algebraic Equations:
A New Algorithm with a Low Time Complexity

Dr. V. S. Patwardhan?

November 2022

Abstract

A new algorithm is presented for solving a NxN system of linear algebraic equations. The main idea
behind this algorithm is to generate a second system of linear algebraic equations (having the same
solution) and take steepest descent steps alternately with the two systems of equations. This
algorithm was tested with randomly generated problems for N up to 1000 and was found to
approach the solution closely in O(N%2) time, which is better than earlier algorithms. It was also
tested with sample problems selected from the SuiteSparse collection of matrices (which are widely
used as benchmark matrices for testing sparse matrix algorithms) which have been obtained from
practical applications in several different areas such as chemical process simulation, computational
fluid dynamics and many others. The current algorithm successfully solves most of these problems
as well, without the use of preconditioners, provided the condition number of the underlying matrix
is not too large. For matrices with a very large condition number, preconditioners may have to be
used, just as other algorithms do. A notable feature of the current algorithm is that it is based on
taking steepest descent steps alone.

Introduction

Solving a system of linear algebraic equations is a classical problem which has many practical
applications in areas such as engineering and science. Systems of large/huge size, involving millions
of equations and unknowns, arise in many diverse frontier areas including process simulation,
computational fluid dynamics, meshing, machine learning, computational chemistry, data mining,
bioinformatics etc. Efficient methods for solving such systems are therefore becoming more and
more important. Such methods ideally should converge fast in a reasonably small number of
iterations, make use of the sparsity to the full extent, be able to deal with very ill-conditioned
systems using appropriate preconditioners, have a low time complexity, and be suitable for
parallelisation. Here we present a new algorithm which has a low time complexity and uses only
matrix vector multiplications as the main computational effort. Thus, it can make full use of sparsity,
and can be easily parallelized. It is shown to handle quite ill-conditioned problems without any
preconditioner.

The NxN system of linear equations can be written in a matrix form as Aox = b, where Ag is a NxN
matrix, bo is an N-vector, and x is the solution vector to be determined. Each row of Ap is assumed to

I Independent researcher. Formerly, Scientist G, National Chemical Laboratory, Pune 411008, India.
Email: vspatw@gmail.com , URL : https://www.vspatwardhan.com

mailto:vspatw@gmail.com
https://www.vspatwardhan.com/

be normalized. There are many direct methods such as gaussian elimination and others which give
an exact solution. However, it is often sufficient to get an approximate solution in practical
applications. Iterative methods essentially start with a guess solution and improve it iteratively to
get closer to the solution within acceptable accuracy. A quick summary of these direct as well as
iterative methods can be found in standard books on linear algebra [for example, J. E. Gentle, 2007].
Iterative methods such as the steepest descent method and the conjugate gradient method are used
when the matrix is symmetric and positive definite. (It is well known that Aex = be can be put in the
form Ax = b where A = Ag"Ap and b = A¢"bo. This gives a symmetric positive definite matrix A for any
Ao.) These are based on minimizing an appropriately defined quadratic function, using optimization
techniques. Details of these methods, including convergence analysis, are available in standard
books and reports [for example, J. R. Shewchuk, 1994]. Variations of the steepest descent method
are available which use the momentum concept to achieve faster convergence [Y. Nesterov, 1983; I.
Sutskever et. Al., 2013].

The direct methods such as Gaussian elimination and derived methods can be shown to run in O(N3)
time. This computational complexity is closely related to the complexity of matrix multiplication. A
straightforward multiplication of two matrices also has a complexity of O(N3). There have been
steady efforts in reducing this complexity. It was shown by Strassen [1969] that the complexity can
be reduced to O(N%®) by rearranging the computations. It was reduced further to O(N%%’) by
Coppersmith and Winograd [1990]. Recently the complexity has been reduced further to O(N?33?) by
Peng and Vempala [2021]. The question whether it can be reduced to the theoretical minimum of
O(N?) is still an open question.

The algorithm developed here, which can be termed as the augmented matrix (AM) algorithm, is
inspired by some geometrical observations, described in detail below. It is tested using (1) randomly
generated problems which involve gaussian matrices of different sizes where each element is N(0,1),
and (2) sample problems selected from the SuiteSparse collection of matrices, which are widely used
as benchmark matrices. It is an iterative algorithm, which involves augmenting the coefficient matrix
with an additional row (which is equivalent to adding a new, consistent equation to the system of
equations) and taking steepest descent steps alternately with the original and augmented matrices.

Augmented matrix algorithm (AM algorithm)

There are three geometrical observations, made earlier, which together lead to the AM algorithm,
and are described below:

(1) The first observation concerns the application of the steepest descent (SD) method for
solving a NxN system of linear equations. The SD method starts with a given point and
obtains subsequent points iteratively, monitoring the approach to solution in terms of the
sum of squares of the residuals at each step. It is well known that the steepest descent
method leads to a fast approach to the solution (i.e., gives rapid reduction in residuals) in
the first few steps and slows down substantially in the following steps. There are two
possible ways of bypassing this slow down [Patwardhan, 2022a] and making the steepest
descent method much faster, which include random movement of the point between
iterations, and possible matrix transformations between iterations. It was shown that these
approaches can increase the speed of convergence of the steepest descent method by

several orders of magnitude, though the question of how to achieve random movement /
matrix transformations was not addressed.

(2) The second observation concerns the geometry of the intersecting hyperplanes representing
a NxN system of linear equations. It has been shown earlier [Patwardhan, 2022b] that, in a
large dimensional space defined by a NxN system of linear equations with large N, several
directions exist which are almost orthogonal to all the rows of the matrix. Using one or more
of these directions to get a new equation (i.e., an augmented matrix), it is possible to change
the orientation of the ellipsoids of the sum of squares of the residuals significantly. This
makes it possible to use the SD method alternately with the original and the augmented
matrices, to achieve fast convergence to the solution. It may be noted that changing the
orientation of the ellipsoids is, in principle, equivalent to the random movement of the
point, or possible matrix transformations, between iterations.

(3) The third observation concerns the effect of adding a new, consistent equation to the
system of linear algebraic equations, i.e. Aox = by repeatedly, on eigenvalues and
eigenvectors of A. Let the new equation be v'x = w. Let us assume that v is normalized, and
that the solution s satisfies this equation, i.e., v's = w. (v can be one of the directions
mentioned in the second observation. The choice of w is described later.) It has been shown
earlier [Patwardhan, 2022b] that if this equation is added k times to the Aox = bgsystem, we
get an augmented system with a (N+k)x(N) coefficient matrix and a (N+k)x(1) right hand side.
This system can be converted to a symmetric positive definite system Agx = bx where

Ax = (AoTAo + kVVT) and b = AoTbo + kwv (1)

It has been shown earlier that for a large enough value of k, (i) v becomes the eigenvector of
A corresponding to the largest eigenvalue (which is equal to k itself), and (ii) both the
systems, i.e., Agx = bo and Axx = by, have the same solution s., provided v's = w. From a
geometrical viewpoint, the SS;es contours change orientation as k increases, while the
solution s remains unchanged. A value of k = 4 or more was found to be “sufficiently large”
for N up to 1000.

A key point is the appropriate choice of w. For a given vector v, the ideal choice of w is v's. However,
since s is not known at the beginning, the algorithm starts with a trial value of w, which gets updated
at each iteration.

A brief outline of the AM algorithm

We start with two points q: and g, which define a line that points approximately towards the
solution (the computation of q; and qz is described below.) The direction v given by q: and q; is used
to get a trial solution s, and a new equation passing through the trial solution, using w = v's. The
original system of equations, i.e. AgX = by, is converted into two (NxN) symmetric positive definite
systems, i.e. Ax = b and Axx = by using equation (1). The point g is adjusted by taking a fixed number
of SD steps with the two systems of equations alternately. The point q; is also adjusted similarly. The
adjusted points are used to get an improved direction v, a new trial solution, and a new value of w.
This is done iteratively till the SS,.s at the approximate solution point becomes acceptably low, or the
iteration count exceeds a set maximum value.

The augmented matrix algorithm in detail

O 00 N O U b WN B

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Given: N, Ag, and bg
Selectable parameters: k, n1, nz, mi, m;

Initial calculations

Calculate A (= Ao'Ao) and b (= Ao'bo)

Get two random vectors z; and z; with elements N(0,1)

Normalize z; and z;

Setpi=12;

Get q1,0 by applying m; steepest descent steps to p;, using Aand b
Calculate d = distance p1 - qi,0

Setp,=qio+mydz;

Get q2,0 by applying m; steepest descent steps to p,, using Aand b
Get Vo =q1,0- Q2,0

Get s, the point which minimizes SS..s along the line vo drawn through g,
Iterative calculations

Seti=1
While Ores > Ores crit , dO
Set W, = Vi1'Si1
Set Wa,i = Vit 'O2,i1
Calculate A = (Ao"Ao + kwv')
Calculate bk = Ao'bo + kwy v
Forj=1tom
Adjust q1,i.1 by applying n, SD steps with A and by,
Adjust q1,i1 further by applying n; SD steps with A and b
Next j
Set q1,i= Qi1
Calculate by = Ao'bo + kwa,v
Forj=1tom
Adjust qz,i.1 by applying n; SD steps with A and by,
Adjust qz,i.1 further by applying n, SD steps with A and b
Next j
Set 02,i= q2,i-1
Calculate vi =gz, - q1,
Get sj, the point which minimizes SSes along the line vi drawn through qz;
i=i+1
End while

At the end of initial calculations (step 10) the AM algorithm comes up with qi,0, g2,0, Vo and so. These
are then improved iteratively through steps 11-31. Steps 13 and 14 are aimed at keeping ¢, as an
anchor, away from the solution, while pushing g, towards the solution, which makes the direction v;
more accurate as iterations proceed.

The AM algorithm was tested with two sets of problems. The first set consisted of randomly
generated problems with a problem size up to N = 1000, and the second set of problems was a
subset selected from the SuiteSparse collection. The performance of the algorithm is characterised
in terms of the variation of ars and oax with successive iterations, the number of iterations required
to reduce ores below a critical value, and the running time. The results obtained with these two sets
of problems are described below.

Results using randomly generated test problems

Problem generation:

It is expected that any iterative method for solving a system of algebraic equations would give a
quicker approach to the solution if the starting point were closer to the solution. To remove this
source of variation, the problems generated had their solution at a fixed distance from the origin,
but in a random direction. The following procedure was used for generating the problem data, i.e. Ao
and bo. A random vector was generated with N(0,1) elements (i.e. standard normal deviates). The
solution point s was chosen 10 units away from the origin in the direction of this random vector. The
coefficient matrix Ao was generated with N(0,1) elements, and each row of Ag was normalized. The
bo vector was generated as bo = Aos. (The solution s was used only for generating the right-hand side
and was completely ignored while solving the system of equations using the AM algorithm.) N was
varied from 10 to 1000 using 13 values of N which were uniformly spaced on a logarithmic scale. The
actual values of N are seen in Table 1. For each value of N, five independent problems were
generated and solved.

Computational results:

The parameter values selected were k =30, m; =20, m; = 10, n; =40 and n, = 20. The AM algorithm
was applied to the system Aox = bo. A point 10 units away from the origin, in a random direction
from the origin, was taken as the starting point. The progress of iterations was monitored by
calculating ores (i.e., the root mean square of the residuals, R; for the current x), and iterations were
terminated when ogres became smaller than a critical value (which was selected as 0.0001). The final
point was characterised by calculating ox (i.e., the root mean square value of the deviations (x;- si),
for i=1 to N). During the iterative calculations, the known solution point was used only for
characterising the successive iterates as stated above. The algorithm was tested for thirteen values
of N from 10 to 1000. These values of N were such that they were almost uniformly spaced on a log
scale. For each N, five different problems were generated at random. The running time refers only to
the time taken for calculating the solution, and excludes the time taken for problem generation or
reading. The running times were normalised by using the running time for N = 100, and only the
ratios are considered. This was done to filter out the effect of variations in operating speeds of
different computer systems.

The computational results obtained with these randomly generated problems are shown in Table 1
below. Figure 1 shows a log-log plot of run time ratio vs. problem size N. Figure 2 shows a similar
plot of the number of iterations required vs. problem size N.

No. N Ores - Run t.ime iterat.ions
ratio required

1 10 1.16E-06 4.12E-06 1.58E-02 1.8
2 14 5.54E-06 2.05E-04 1.94E-02 1.8
3 20 2.25E-05 1.52E-04 3.41E-02 1.8
4 32 1.76E-05 3.20E-04 1.10E-01 3
5 50 3.07E-05 7.02E-04 2.05E-01 2.6
6 70 2.56E-05 8.66E-02 4.66E-01 2.8
7 100 4.86E-05 7.95E-03 1.00E+00 2.8
8 140 5.48E-05 7.71E-03 3.23E+00 4.2
9 200 5.62E-05 2.60E-02 8.65E+00 5.2
10 320 6.50E-05 2.34E-02 1.79E+01 4.4
11 500 7.45E-05 1.07E-02 5.54E+01 5.6
12 700 7.00E-05 1.71E-02 1.46E+02 7.4
13 1000 9.29E-05 1.92E-02 1.94E+02 5.8

Table 1. Computational results obtained for randomly generated
problems of size of N = 10-1000 (average of 5 different
problems for each N)

Log (Run time ratio) vs. Log (N)

25

y =2.2049x - 4.2594 ®. "
R?=0.9925 P

15

05 K

Log (Run time ratio)

o5 1 15 .8 2 25 3

15 —
.

Log (N)

Figure 1: Reduced run time for different N values

Log (No. of iter. reqd.) vs. Log (N)

0.9
y =0.3059x-0.0797

0.8 et
R? = 0.9097 I 4
0.7 L

06
05 .
0.4
03
02 [~
01

Log (no. of iter. reqd.)

1 15 2 25 3
Log (N)

Figure 2: No. of iterations required for different N values

It is seen from Table 1 that all the problems were solved successfully, with the final ores less than
0.0001. The oaxVvalues increase somewhat with N, but even for N = 1000, all coordinates get
calculated within about 0.02 or so. Figure 1 shows that the time complexity of the AM algorithm is
about O(N22). This is better than computational complexities reported so far. Figure 2 shows that the
number of iterations increase very slowly with N, and show a dependence of O(N°3) or so. Table 1
shows that as N goes from 10 to 1000, the number if iterations increase only from 1.8 to 5.8. In
other words, as N increases 100-fold, the number of iterations increases only by a factor of 3.2 or so.
The main calculations within a single iteration involve a fixed number of only matrix-vector
multiplications, which are O(N2). So, the overall increase in computation time with N, beyond the
factor of N, is only due to the increase in number of iterations. However, this dependence is only a
weak dependence on N.

Results using problems from the SuiteSparse collection

The test matrices used above were randomly generated dense gaussian matrices. It is well known
that results obtained with artificially generated matrices can be misleading to some extent. Huge
matrices that arise in practical applications in areas such as optimization, chemical process
simulation, structural engineering, computational fluid dynamics etc. are highly sparse, and often
have a very high condition number, which can make computations very time consuming.

The SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Matrix
Collection), is a large and actively growing set of sparse matrices that arise in real applications
[Davies A. and Hu, Y., 2011]. The Collection is widely used for the development and performance
evaluation of sparse matrix algorithms. It allows for robust and repeatable experiments, since the
matrices are from real life applications, and are publicly available in many formats.

Problem Non-zero Non-zero Condition
No. N elements
Name elements number
per row

1 | pores_1l.mtx 30 180 6 | 1.81E+06
2 | d_ss.mtx 53 149 2.8 | 6.14E+08
3 | impcol_b.mtx 59 312 5.2 | 1.64E+05
4 | west0067.mtx 67 294 4.3 | 1.30E+02
5 | steam3.mtx 80 928 11.6 | 4.99E+10
6 | d_dyn.mtx 87 238 2.7 | 7.42E+06
7 | d_dynl.mtx 87 238 2.7 | 7.43E+06
8 | tols90.mtx 90 1746 19.4 | 2.02E+04
9 | olm100.mtx 100 396 3.9 | 1.53E+04
10 | tub100.mtx 100 396 3.9 | 1.33E+04
11 | Ins_131.mtx 131 536 4 | 1.28E+15
12 | Insp_131.mtx 131 536 4 | 1.28E+15
13 | west0132.mtx 132 414 3.1 | 4.21E+11
14 | impcol_c.mtx 137 411 3| 1.77E+04
15 | west0156.mtx 156 371 2.3 | 2.31E+18
16 | west0167.mtx 167 507 3 | 4.79E+10
17 | bwm200.mtx 200 796 3.9 | 2.41E+03
18 | rdb200.mtx 200 1120 5.6 | 3.45E+02
19 | rdb200l.mtx 200 1120 5.6 | 1.33E+02
20 | impcol_a.mtx 207 572 2.7 | 1.35E+08
21 | exl.mtx 216 4352 20.1 | 3.30E+04
22 | impcol_e.mtx 225 1308 5.8 | 7.10E+06
23 | saylrl.mtx 238 1128 4.7 | 7.78E+08
24 | steaml.mtx 240 3762 15.6 | 2.83E+07
25 | tols340.mtx 340 2196 6.4 | 2.03E+05
26 | poisson2D.mtx 367 2417 6.5 | 1.33E+02
27 | impcol_d.mtx 425 1339 3.1 | 2.06E+03
28 | ex2.mtx 441 13640 30.9 | 1.03E+10
29 | rdb450.mtx 450 2580 5.7 | 6.85E+02
30 | rdb450l.mtx 450 2580 5.7 | 2.10E+02
31 | olm500.mtx 500 1996 3.9 | 3.73E+05
32 | pores_3.mtx 532 3474 6.5 | 5.61E+05
33 | steam2.mtx 600 13760 22.9 | 3.78E+06
34 | ex21.mtx 656 19144 29.1 | 5.68E+08
35 | rdb800l.mtx 800 4640 5.8 | 3.23E+02
36 | ex22.mtx 839 22715 27 | 3.28E+04
37 | ex25.mtx 848 24612 29 | 5.11E+07
38 | orsirr_2.mtx 886 5970 6.7 | 6.33E+04
39 | DKO1R.mtx 903 11766 13 | 5.89E+07
40 | rdb968.mtx 968 5632 5.8 | 3.78E+02

Table 2. Problems selected from the SuiteSparse collection

The AM algorithm described above, was used for solving a sample of test matrices from the
SuiteSparse collection. Computational results obtained are described below.

Problem selection: Several problems were selected from the SuiteSparse collection, from the areas

of chemical process simulation and computational fluid dynamics, with N <= 1000, to keep the

computation time reasonable. The condition numbers of the selected matrices, as reported in the
SuiteSparse collection, covered a wide range of 130 to 2.31x10%8. The problems selected are
summarised in Table 2.

The problems listed in Table 2 cover a range of N up to 1000, and have a very high sparsity, as
indicated by the number of non-zero elements per row. The condition numbers cover a very wide
range of 130 to 2.31x10%. Most of the matrices did not have a right-hand side. To test the AM
algorithm (which aims to solve linear equations), right-hand sides had to be generated. For this
purpose, a point was generated in a random direction, 100 units away from the origin, and was
taken as the solution s. The right-hand side was then generated using this solution, as bo = Aos. (The
solution s was used only for generating the right-hand side and was completely ignored while solving
the system of equations using the AM algorithm.) A point 10 units away from the origin, in a random
direction, was taken as the starting point for the AM algorithm.

Computational results:

The parameter values selected were k = 30, m; = 20, m; = 10, n; = 40 and n, = 20. Table 3 shows the
computational results obtained with the AM algorithm for the problems listed in Table 2. It is seen
that 27 of the 40 problems selected are solved very well by the AM algorithm. For these problems,
the AM algorithm rapidly approaches the solution, often in just a few iterations. For these problems,
the average deviation in solution coordinates is less than 0.0005, the average number of iterations
required is 11, and the condition numbers cover a range from 130 to 4.99x10%°. For the 13 problems
which are not solved within 50 iterations, the speed of approaching the solution becomes too low.
This needs further investigation, and probably, some modification of the AM algorithm. The
condition numbers cover a range from 6.33x10% 2.31x10. This range is much higher than that
covered by problems which were successfully solved by the AM algorithm. The condition number
values appear to correlate with the success/failure of the AM algorithm in the current form. It may
be noted that the AM algorithm does not make use of any preconditioner matrices. If
preconditioners are used, all these problems are likely to get solved successfully. This aspect needs
to be investigated further.

Discussion

The results presented in Table 1 and Figures 1 and 2 indicate that the AM algorithm successfully
solved all the 65 randomly generated problems with N < 1000. The final solution given by the AM
algorithm was very close to the actual solution. The approach to the solution was fast, and the
algorithm took just a few iterations. The number of iterations was found to have only a weak
dependence on the problem size. The overall time complexity was found to be in O(N?2), which is
very attractive.

The AM algorithm uses k, n1, n2, m1 and m; as user-selected parameters. It has been mentioned
earlier that k = 4-5 is sufficient for a shift of the eigenvector for the largest eigenvalue to v. However,
a higher value of 30 was found to be more suitable for computations. The parameters n; and n, (= 40
and 20 respectively) define the number of SD steps taken by the algorithm. If these can be reduced,
the algorithm would run faster. Work in this direction is in progress. The parameters m; and m; (= 20
and 10 respectively) which appear in the initial calculations of the AM algorithm are relatively less
critical and can be changed if desired.

No. Problem N Condition | Iterations O Solved ?
Name number reqd.

1 | pores_1.mtx 30 | 1.81E+06 30 | 0.0004267 | Yes

2 | d_ss.mtx 53 | 6.14E+08 8 | 7.332E-05 | Yes

3 | impcol_b.mtx 59 | 1.64E+05 8 | 3.275E-05 | Yes

4 | west0067.mtx 67 | 1.30E+02 4 | 1.568E-06 | Yes

5 | steam3.mtx 80 | 4.99E+10 5 | 0.0002091 | Yes

6 | d_dyn.mtx 87 | 7.42E+06 10 | 0.0002744 | Yes

7 | d_dynl.mtx 87 | 7.43E+06 11 | 0.0002571 | Yes

8 | tols90.mtx 90 | 2.02E+04 1| 1.179E-13 | Yes

9 | olm100.mtx 100 | 1.53E+04 9 0.00011 | Yes
10 | tub100.mtx 100 | 1.33E+04 47 | 0.0009838 | Yes
14 | impcol_c.mtx 137 | 1.77E+04 2 | 1.417E-08 | Yes
17 | bwm?200.mtx 200 | 2.41E+03 21 | 0.0007754 | Yes
18 | rdb200.mtx 200 | 3.45E+02 4 | 2.199E-05 | Yes
19 | rdb200l.mtx 200 | 1.33E+02 3 | 1.324E-05 | Yes
21 | exl.mtx 216 | 3.30E+04 4 | 0.000119 | Yes
22 | impcol_e.mtx 225 | 7.10E+06 35 | 0.0004946 | Yes
24 | steaml.mtx 240 | 2.83E+07 1| 1.235E-06 | Yes
25 | tols340.mtx 340 | 2.03E+05 1| 9.408E-15 | Yes
26 | poisson2D.mtx 367 | 1.33E+02 4 | 7.775E-07 | Yes
27 | impcol_d.mtx 425 | 2.06E+03 10 | 9.025E-05 | Yes
28 | ex2.mtx 441 | 1.03E+10 51 | 0.007835 | Yes
29 | rdb450.mtx 450 | 6.85E+02 7 | 6.565E-05 | Yes
30 | rdb450l.mtx 450 | 2.10E+02 3 | 4.967E-06 | Yes
33 | steam2.mtx 600 | 3.78E+06 1 | 0.0002216 | Yes
35 | rdb800I.mtx 800 | 3.23E+02 5 | 3.249E-05 | Yes
36 | ex22.mtx 839 | 3.28E+04 9 | 3.128E-05 | Yes
40 | rdb968.mtx 968 | 3.78E+02 5| 4.832E-05 | Yes
11 | Ins_131.mtx 131 | 1.28E+15 51 | 16.736189 | No
12 | Insp_131.mtx 131 | 1.28E+15 51 | 10.485417 | No
13 | west0132.mtx 132 | 4.21E+11 51 | 23.293316 | No
15 | west0156.mtx 156 | 2.31E+18 40 | 43.194152 | No
16 | west0167.mtx 167 | 4.79E+10 51 | 23.046129 | No
20 | impcol_a.mtx 207 | 1.35E+08 51 | 8.7734968 | No
23 | saylrl.mtx 238 | 7.78E+08 51 | 44.046211 | No
31 | olm500.mtx 500 | 3.73E+05 51 | 18.791045 | No
32 | pores_3.mtx 532 | 5.61E+05 51 | 25.920135 | No
34 | ex21.mtx 656 | 5.68E+08 51 10.6075 | No
37 | ex25.mtx 848 | 5.11E+07 51 | 14.635598 | No
38 | orsirr_2.mtx 886 | 6.33E+04 51 | 2.2424177 | No
39 | DKO1R.mtx 903 | 5.89E+07 51 | 13.488244 | No

Table 3. Computational results for the problems listed in Table 2

Results obtained for the problems selected from the SuiteSparse collection, presented in Tables 2
and 3 indicate that 27 of the 40 problems selected were solved successfully by the AM algorithm,
and the average number of iterations required was equal to 11, which is comparable to the number
for the randomly generated problems. The remaining 13 problems did not get solved well. These
problems covered a higher range of condition numbers. It may be noted that no preconditioners

10

were used in this work. If preconditioners are used, even these problems may get solved
successfully. This is an aspect that is being investigated.

Conclusions

The AM algorithm presented here, which is based on three earlier geometrical observations, shows a
low time complexity of O(N?2) for randomly generated problems. It converges to the solution in a
small number of iterations for N up to 1000. For problems selected from the SuiteSparse collection,
most of the problems are successfully solved, and that too, without using any preconditioner. Most
of the computational effort of the AM algorithm is for matrix-vector multiplications. Therefore, it
can make full use of sparsity, and can be efficiently parallelised.

Nomenclature

Ao the coefficient matrix in the system Agx = by

bo the right-hand side in the system Aox = bo

A = Ao'Ao

Ax =Ao'Ag + kwv'

b = Ao'bo

bx = Ao'bo + kwv

d the distance p1 - qi0

i iteration number

j loop variable

k number of times the new equation is added to the system of equations
ni, N2, M1, M> parameters in the AM algorithm
N system size (the number of equations/unknowns)

p1, P2 points appearing in the AM algorithm
d:1, 92 points appearing in the AM algorithm

R residuals = bg - Aox

s solution vector for the system Aox = b

SSres sum of squares of the residuals

v coefficient vector in the new equation, vix =w
w right-hand side of the new equation, vix=w
w1, W, defined in the AM algorithm (steps 13 and 14)
X the vector of unknowns

21,2, Vvectors with elements N(0,1)

Ores root mean square value of the residuals (= R)
Orescrit Critical value of Ores

Onx root mean square value of the deviations (= x—s)
Subscripts

o initial values

i i"" iteration

11

Superscripts

T transpose of a matrix
References

[1] Gentle, J. E.,
Matrix Algebra - Theory, Computations, and Applications in Statistics
Pub. Springer, New York, USA (2007)

[2] Shewchuk J. R.,
An Introduction to the Conjugate Gradient Method
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (1994)

[3] Nesterov, Y.,
A Method of Solving a Convex Programming Problem with Convergence Rate O(1/k"2)
Soviet Mathematics Doklady, 27, 372-376 (1983)

[4] Sutskever I., Martens J., Dahl G., and Hinton G.,
On the Importance of Initialization and Momentum in Deep Learning
Proceedings of the 30th International Conference on Machine Learning,
PMLR 28(3), 1139-1147 (2013)

[5] Strassen, V.
Gaussian Elimination is not Optimal
Numer. Math. 13 (4), 354-356 (1969)

[6] Coppersmith, D. and Winograd, S.
Matrix multiplication via arithmetic progressions
Journal of Symbolic Computation, 9 (3): 251 (1990)

[7] Peng R. and Vempala S.
Solving Sparse Linear Systems Faster than Matrix Multiplication
arXiv:2007.10254 [cs.DS] (2021)

[8] Patwardhan, V.,
Solution of a NxN System of Linear algebraic Equations: 1 -- The Steepest Descent Method

Revisited
https://doi.org/10.48550/arXiv.2206.07482 (2022a)

[9] Patwardhan V.,
Some Geometrical Properties of a NxN System of Linear Equations
doi: 10.13140/RG.2.2.27971.27687 (2022b)

[10] Timothy A. Davis and Yifan Hu. 2011.
The University of Florida Sparse Matrix Collection
ACM Transactions on Mathematical Software 38, 1, Article 1 (December 2011), 25 pages
doi: https://doi.org/10.1145/2049662.2049663

