
1 
 

Solution of a NxN System of Linear Algebraic Equations: 
A New Algorithm with a Low Time Complexity 

 
Dr. V. S. Patwardhan1 

November 2022 

 

Abstract 

A new algorithm is presented for solving a NxN system of linear algebraic equations. The main idea 

behind this algorithm is to generate a second system of linear algebraic equations (having the same 

solution) and take steepest descent steps alternately with the two systems of equations. This 

algorithm was tested with randomly generated problems for N up to 1000 and was found to 

approach the solution closely in O(N2.2) time, which is better than earlier algorithms. It was also 

tested with sample problems selected from the SuiteSparse collection of matrices (which are widely 

used as benchmark matrices for testing sparse matrix algorithms) which have been obtained from 

practical applications in several different areas such as chemical process simulation, computational 

fluid dynamics and many others. The current algorithm successfully solves most of these problems 

as well, without the use of preconditioners, provided the condition number of the underlying matrix 

is not too large. For matrices with a very large condition number, preconditioners may have to be 

used, just as other algorithms do. A notable feature of the current algorithm is that it is based on 

taking steepest descent steps alone. 

Introduction 

Solving a system of linear algebraic equations is a classical problem which has many practical 

applications in areas such as engineering and science. Systems of large/huge size, involving millions 

of equations and unknowns, arise in many diverse frontier areas including process simulation, 

computational fluid dynamics, meshing, machine learning, computational chemistry, data mining, 

bioinformatics etc. Efficient methods for solving such systems are therefore becoming more and 

more important. Such methods ideally should converge fast in a reasonably small number of 

iterations, make use of the sparsity to the full extent, be able to deal with very ill-conditioned 

systems using appropriate preconditioners, have a low time complexity, and be suitable for 

parallelisation. Here we present a new algorithm which has a low time complexity and uses only 

matrix vector multiplications as the main computational effort. Thus, it can make full use of sparsity, 

and can be easily parallelized. It is shown to handle quite ill-conditioned problems without any 

preconditioner. 

The NxN system of linear equations can be written in a matrix form as A0x = b0, where A0 is a NxN 

matrix, b0 is an N-vector, and x is the solution vector to be determined. Each row of A0 is assumed to 

________________________________________________________________________________ 

1 Independent researcher. Formerly, Scientist G, National Chemical Laboratory, Pune 411008, India. 

  Email: vspatw@gmail.com , URL : https://www.vspatwardhan.com 

mailto:vspatw@gmail.com
https://www.vspatwardhan.com/


2 
 

be normalized. There are many direct methods such as gaussian elimination and others which give 

an exact solution. However, it is often sufficient to get an approximate solution in practical 

applications. Iterative methods essentially start with a guess solution and improve it iteratively to 

get closer to the solution within acceptable accuracy. A quick summary of these direct as well as 

iterative methods can be found in standard books on linear algebra [for example, J. E. Gentle, 2007]. 

Iterative methods such as the steepest descent method and the conjugate gradient method are used 

when the matrix is symmetric and positive definite. (It is well known that A0x = b0 can be put in the 

form Ax = b where A = A0
TA0 and b = A0

Tb0. This gives a symmetric positive definite matrix A for any 

A0.) These are based on minimizing an appropriately defined quadratic function, using optimization 

techniques. Details of these methods, including convergence analysis, are available in standard 

books and reports [for example, J. R. Shewchuk, 1994]. Variations of the steepest descent method 

are available which use the momentum concept to achieve faster convergence [Y. Nesterov, 1983; I. 

Sutskever et. Al., 2013].  

The direct methods such as Gaussian elimination and derived methods can be shown to run in O(N3) 

time. This computational complexity is closely related to the complexity of matrix multiplication. A 

straightforward multiplication of two matrices also has a complexity of O(N3). There have been 

steady efforts in reducing this complexity. It was shown by Strassen [1969] that the complexity can 

be reduced to O(N2.8) by rearranging the computations. It was reduced further to O(N2.37) by  

Coppersmith and Winograd [1990]. Recently the complexity has been reduced further to O(N2.332) by 

Peng and Vempala [2021]. The question whether it can be reduced to the theoretical minimum of 

O(N2) is still an open question. 

The algorithm developed here, which can be termed as the augmented matrix (AM) algorithm, is 

inspired by some geometrical observations, described in detail below. It is tested using (1) randomly 

generated problems which involve gaussian matrices of different sizes where each element is N(0,1), 

and (2) sample problems selected from the SuiteSparse collection of matrices, which are widely used 

as benchmark matrices. It is an iterative algorithm, which involves augmenting the coefficient matrix 

with an additional row (which is equivalent to adding a new, consistent equation to the system of 

equations) and taking steepest descent steps alternately with the original and augmented matrices. 

Augmented matrix algorithm (AM algorithm) 

There are three geometrical observations, made earlier, which together lead to the AM algorithm, 

and are described below: 

(1) The first observation concerns the application of the steepest descent (SD) method for 

solving a NxN system of linear equations. The SD method starts with a given point and 

obtains subsequent points iteratively, monitoring the approach to solution in terms of the 

sum of squares of the residuals at each step. It is well known that the steepest descent 

method leads to a fast approach to the solution (i.e., gives rapid reduction in residuals) in 

the first few steps and slows down substantially in the following steps. There are two 

possible ways of bypassing this slow down [Patwardhan, 2022a] and making the steepest 

descent method much faster, which include random movement of the point between 

iterations, and possible matrix transformations between iterations. It was shown that these 

approaches can increase the speed of convergence of the steepest descent method by 



3 
 

several orders of magnitude, though the question of how to achieve random movement / 

matrix transformations was not addressed. 

(2) The second observation concerns the geometry of the intersecting hyperplanes representing 

a NxN system of linear equations. It has been shown earlier [Patwardhan, 2022b] that, in a 

large dimensional space defined by a NxN system of linear equations with large N, several 

directions exist which are almost orthogonal to all the rows of the matrix. Using one or more 

of these directions to get a new equation (i.e., an augmented matrix), it is possible to change 

the orientation of the ellipsoids of the sum of squares of the residuals significantly. This 

makes it possible to use the SD method alternately with the original and the augmented 

matrices, to achieve fast convergence to the solution. It may be noted that changing the 

orientation of the ellipsoids is, in principle, equivalent to the random movement of the 

point, or possible matrix transformations, between iterations. 

(3) The third observation concerns the effect of adding a new, consistent equation to the 

system of linear algebraic equations, i.e. A0x = b0 repeatedly, on eigenvalues and 

eigenvectors of A. Let the new equation be vTx = w. Let us assume that v is normalized, and 

that the solution s satisfies this equation, i.e., vTs = w. (v can be one of the directions 

mentioned in the second observation. The choice of w is described later.) It has been shown 

earlier [Patwardhan, 2022b] that if this equation is added k times to the A0x = b0 system, we 

get an augmented system with a (N+k)x(N) coefficient matrix and a (N+k)x(1) right hand side. 

This system can be converted to a symmetric positive definite system Akx = bk where  

                                           Ak = (A0
TA0 + kvvT) and bk = A0

Tb0 + kwv                                                (1) 

It has been shown earlier that for a large enough value of k, (i) v becomes the eigenvector of 

Ak corresponding to the largest eigenvalue (which is equal to k itself), and (ii) both the 

systems, i.e., A0x = b0 and Akx = bk, have the same solution s., provided vTs = w. From a 

geometrical viewpoint, the SSres contours change orientation as k increases, while the 

solution s remains unchanged. A value of k = 4 or more was found to be “sufficiently large” 

for N up to 1000. 

A key point is the appropriate choice of w. For a given vector v, the ideal choice of w is vTs. However, 

since s is not known at the beginning, the algorithm starts with a trial value of w, which gets updated 

at each iteration. 

A brief outline of the AM algorithm  

We start with two points q1 and q2 which define a line that points approximately towards the 

solution (the computation of q1 and q2 is described below.) The direction v given by q1 and q2 is used 

to get a trial solution s, and a new equation passing through the trial solution, using w = vTs. The 

original system of equations, i.e. A0x = b0, is converted into two (NxN) symmetric positive definite 

systems, i.e. Ax = b and Akx = bk using equation (1). The point q1 is adjusted by taking a fixed number 

of SD steps with the two systems of equations alternately. The point q2 is also adjusted similarly. The 

adjusted points are used to get an improved direction v, a new trial solution, and a new value of w. 

This is done iteratively till the SSres at the approximate solution point becomes acceptably low, or the 

iteration count exceeds a set maximum value. 

 



4 
 

The augmented matrix algorithm in detail 

______________________________________________________ 

Given:  N, A0, and b0  

Selectable parameters: k, n1, n2, m1, m2 

Initial calculations 

1 Calculate A (= A0
TA0) and b (= A0

Tb0) 

2 Get two random vectors z1 and z2 with elements N(0,1) 

3 Normalize z1 and z2  

4 Set p1 = z1  

5 Get q1,0 by applying m1 steepest descent steps to p1, using A and b  

6 Calculate d = distance p1 - q1,0 

7 Set p2 = q1,0 + m2 d z2  

8 Get q2,0 by applying m1 steepest descent steps to p2, using A and b 

9 Get v0 = q1,0 - q2,0  

10 Get s0, the point which minimizes SSres along the line v0 drawn through q2,0  

Iterative calculations 

11 Set i = 1 

12 While σres > σres,crit , do 

13     Set w1,i = vi-1
Tsi-1  

14     Set w2,i = vi-1
Tq2,i-1  

15     Calculate Ak,i = (A0
TA0 + kvvT)  

16     Calculate bk,i = A0
Tb0 + kw1,iv                                               

17         For j = 1 to n1 

18             Adjust q1,i-1 by applying n2 SD steps with Ak,i and bk,I  

19             Adjust q1,i-1 further by applying n2 SD steps with A and b  

20         Next j 

21     Set q1,i = q1,i-1 

22     Calculate bk,i = A0
Tb0 + kw2,iv                                               

23         For j = 1 to n1 

24             Adjust q2,i-1 by applying n2 SD steps with Ak,i and bk,I  

25             Adjust q2,i-1 further by applying n2 SD steps with A and b  

26         Next j 

27     Set q2,i = q2,i-1 

28     Calculate vi = q2,i - q1,I  

29     Get si, the point which minimizes SSres along the line vi drawn through q2,i 

30     i = i + 1 

31 End while 

______________________________________________________ 

 



5 
 

At the end of initial calculations (step 10) the AM algorithm comes up with q1,0 , q2,0 , v0 and s0. These 

are then improved iteratively through steps 11-31. Steps 13 and 14 are aimed at keeping q2,i as an 

anchor, away from the solution, while pushing q1,i towards the solution, which makes the direction vi 

more accurate as iterations proceed. 

The AM algorithm was tested with two sets of problems. The first set consisted of randomly 

generated problems with a problem size up to N = 1000, and the second set of problems was a 

subset selected from the SuiteSparse collection. The performance of the algorithm is characterised 

in terms of the variation of σres and σΔx with successive iterations, the number of iterations required 

to reduce σres below a critical value, and the running time. The results obtained with these two sets 

of problems are described below. 

Results using randomly generated test problems 

Problem generation:  

It is expected that any iterative method for solving a system of algebraic equations would give a 

quicker approach to the solution if the starting point were closer to the solution. To remove this 

source of variation, the problems generated had their solution at a fixed distance from the origin, 

but in a random direction. The following procedure was used for generating the problem data, i.e. A0 

and b0.  A random vector was generated with N(0,1) elements (i.e. standard normal deviates). The 

solution point s was chosen 10 units away from the origin in the direction of this random vector. The 

coefficient matrix A0 was generated with N(0,1) elements, and each row of A0 was normalized. The 

b0 vector was generated as b0 = A0s. (The solution s was used only for generating the right-hand side 

and was completely ignored while solving the system of equations using the AM algorithm.) N was 

varied from 10 to 1000 using 13 values of N which were uniformly spaced on a logarithmic scale. The 

actual values of N are seen in Table 1. For each value of N, five independent problems were 

generated and solved.  

Computational results: 

The parameter values selected were k = 30, m1 = 20, m2 = 10, n1 = 40 and n2 = 20. The AM algorithm 

was applied to the system A0x = b0. A point 10 units away from the origin, in a random direction 

from the origin, was taken as the starting point. The progress of iterations was monitored by 

calculating σRes (i.e., the root mean square of the residuals, Ri for the current x), and iterations were 

terminated when σRes became smaller than a critical value (which was selected as 0.0001). The final 

point was characterised by calculating σΔx (i.e., the root mean square value of the deviations (xi - si), 

for i=1 to N). During the iterative calculations, the known solution point was used only for 

characterising the successive iterates as stated above. The algorithm was tested for thirteen values 

of N from 10 to 1000. These values of N were such that they were almost uniformly spaced on a log 

scale. For each N, five different problems were generated at random. The running time refers only to 

the time taken for calculating the solution, and excludes the time taken for problem generation or 

reading. The running times were normalised by using the running time for N = 100, and only the 

ratios are considered. This was done to filter out the effect of variations in operating speeds of 

different computer systems. 



6 
 

The computational results obtained with these randomly generated problems are shown in Table 1 

below. Figure 1 shows a log-log plot of run time ratio vs. problem size N. Figure 2 shows a similar 

plot of the number of iterations required vs. problem size N. 

 

 
No. 

 
N 

 
σRes 

 
σΔx 

 
Run time 

ratio 

 
iterations 
required 

1 10 1.16E-06 4.12E-06 1.58E-02 1.8 

2 14 5.54E-06 2.05E-04 1.94E-02 1.8 

3 20 2.25E-05 1.52E-04 3.41E-02 1.8 

4 32 1.76E-05 3.20E-04 1.10E-01 3 

5 50 3.07E-05 7.02E-04 2.05E-01 2.6 

6 70 2.56E-05 8.66E-02 4.66E-01 2.8 

7 100 4.86E-05 7.95E-03 1.00E+00 2.8 

8 140 5.48E-05 7.71E-03 3.23E+00 4.2 

9 200 5.62E-05 2.60E-02 8.65E+00 5.2 

10 320 6.50E-05 2.34E-02 1.79E+01 4.4 

11 500 7.45E-05 1.07E-02 5.54E+01 5.6 

12 700 7.00E-05 1.71E-02 1.46E+02 7.4 

13 1000 9.29E-05 1.92E-02 1.94E+02 5.8 

Table 1. Computational results obtained for randomly generated 
                problems of size of N = 10-1000 (average of 5 different 
                problems for each N) 

 

                  

        Figure 1: Reduced run time for different N values 

 



7 
 

 

                 

                     Figure 2: No. of iterations required for different N values 

 

It is seen from Table 1 that all the problems were solved successfully, with the final σRes less than 

0.0001. The σΔx values increase somewhat with N, but even for N = 1000, all coordinates get 

calculated within about 0.02 or so. Figure 1 shows that the time complexity of the AM algorithm is 

about O(N2.2). This is better than computational complexities reported so far. Figure 2 shows that the 

number of iterations increase very slowly with N, and show a dependence of O(N0.3) or so. Table 1 

shows that as N goes from 10 to 1000, the number if iterations increase only from 1.8 to 5.8. In 

other words, as N increases 100-fold, the number of iterations increases only by a factor of 3.2 or so. 

The main calculations within a single iteration involve a fixed number of only matrix-vector 

multiplications, which are O(N2). So, the overall increase in computation time with N, beyond the 

factor of N2, is only due to the increase in number of iterations. However, this dependence is only a 

weak dependence on N. 

Results using problems from the SuiteSparse collection 

The test matrices used above were randomly generated dense gaussian matrices. It is well known 

that results obtained with artificially generated matrices can be misleading to some extent. Huge 

matrices that arise in practical applications in areas such as optimization, chemical process 

simulation, structural engineering, computational fluid dynamics etc. are highly sparse, and often 

have a very high condition number, which can make computations very time consuming. 

The SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Matrix 

Collection), is a large and actively growing set of sparse matrices that arise in real applications 

[Davies A. and Hu, Y., 2011]. The Collection is widely used for the development and performance 

evaluation of sparse matrix algorithms. It allows for robust and repeatable experiments, since the 

matrices are from real life applications, and are publicly available in many formats. 

 



8 
 

No. 
Problem 

Name 
N 

Non-zero 
elements 

Non-zero 
elements 
per row 

Condition 
number 

1 pores_1.mtx 30 180 6 1.81E+06 

2 d_ss.mtx 53 149 2.8 6.14E+08 

3 impcol_b.mtx 59 312 5.2 1.64E+05 

4 west0067.mtx 67 294 4.3 1.30E+02 

5 steam3.mtx 80 928 11.6 4.99E+10 

6 d_dyn.mtx 87 238 2.7 7.42E+06 

7 d_dyn1.mtx 87 238 2.7 7.43E+06 

8 tols90.mtx 90 1746 19.4 2.02E+04 

9 olm100.mtx 100 396 3.9 1.53E+04 

10 tub100.mtx 100 396 3.9 1.33E+04 

11 lns_131.mtx 131 536 4 1.28E+15 

12 lnsp_131.mtx 131 536 4 1.28E+15 

13 west0132.mtx 132 414 3.1 4.21E+11 

14 impcol_c.mtx 137 411 3 1.77E+04 

15 west0156.mtx 156 371 2.3 2.31E+18 

16 west0167.mtx 167 507 3 4.79E+10 

17 bwm200.mtx 200 796 3.9 2.41E+03 

18 rdb200.mtx 200 1120 5.6 3.45E+02 

19 rdb200l.mtx 200 1120 5.6 1.33E+02 

20 impcol_a.mtx 207 572 2.7 1.35E+08 

21 ex1.mtx 216 4352 20.1 3.30E+04 

22 impcol_e.mtx 225 1308 5.8 7.10E+06 

23 saylr1.mtx 238 1128 4.7 7.78E+08 

24 steam1.mtx 240 3762 15.6 2.83E+07 

25 tols340.mtx 340 2196 6.4 2.03E+05 

26 poisson2D.mtx 367 2417 6.5 1.33E+02 

27 impcol_d.mtx 425 1339 3.1 2.06E+03 

28 ex2.mtx 441 13640 30.9 1.03E+10 

29 rdb450.mtx 450 2580 5.7 6.85E+02 

30 rdb450l.mtx 450 2580 5.7 2.10E+02 

31 olm500.mtx 500 1996 3.9 3.73E+05 

32 pores_3.mtx 532 3474 6.5 5.61E+05 

33 steam2.mtx 600 13760 22.9 3.78E+06 

34 ex21.mtx 656 19144 29.1 5.68E+08 

35 rdb800l.mtx 800 4640 5.8 3.23E+02 

36 ex22.mtx 839 22715 27 3.28E+04 

37 ex25.mtx 848 24612 29 5.11E+07 

38 orsirr_2.mtx 886 5970 6.7 6.33E+04 

39 DK01R.mtx 903 11766 13 5.89E+07 

40 rdb968.mtx 968 5632 5.8 3.78E+02 

Table 2. Problems selected from the SuiteSparse collection 

 

The AM algorithm described above, was used for solving a sample of test matrices from the 

SuiteSparse collection. Computational results obtained are described below. 

Problem selection: Several problems were selected from the SuiteSparse collection, from the areas 

of chemical process simulation and computational fluid dynamics, with N <= 1000, to keep the 



9 
 

computation time reasonable. The condition numbers of the selected matrices, as reported in the 

SuiteSparse collection, covered a wide range of 130 to 2.31x1018. The problems selected are 

summarised in Table 2.  

The problems listed in Table 2 cover a range of N up to 1000, and have a very high sparsity, as 

indicated by the number of non-zero elements per row. The condition numbers cover a very wide 

range of 130 to 2.31x1018. Most of the matrices did not have a right-hand side. To test the AM 

algorithm (which aims to solve linear equations), right-hand sides had to be generated. For this 

purpose, a point was generated in a random direction, 100 units away from the origin, and was 

taken as the solution s. The right-hand side was then generated using this solution, as b0 = A0s. (The 

solution s was used only for generating the right-hand side and was completely ignored while solving 

the system of equations using the AM algorithm.) A point 10 units away from the origin, in a random 

direction, was taken as the starting point for the AM algorithm. 

Computational results: 

The parameter values selected were k = 30, m1 = 20, m2 = 10, n1 = 40 and n2 = 20. Table 3 shows the 

computational results obtained with the AM algorithm for the problems listed in Table 2. It is seen 

that 27 of the 40 problems selected are solved very well by the AM algorithm. For these problems, 

the AM algorithm rapidly approaches the solution, often in just a few iterations. For these problems, 

the average deviation in solution coordinates is less than 0.0005, the average number of iterations 

required is 11, and the condition numbers cover a range from 130 to 4.99x1010. For the 13 problems 

which are not solved within 50 iterations, the speed of approaching the solution becomes too low. 

This needs further investigation, and probably, some modification of the AM algorithm. The 

condition numbers cover a range from 6.33x104 2.31x1018. This range is much higher than that 

covered by problems which were successfully solved by the AM algorithm. The condition number 

values appear to correlate with the success/failure of the AM algorithm in the current form. It may 

be noted that the AM algorithm does not make use of any preconditioner matrices. If 

preconditioners are used, all these problems are likely to get solved successfully. This aspect needs 

to be investigated further. 

Discussion 

The results presented in Table 1 and Figures 1 and 2 indicate that the AM algorithm successfully 

solved all the 65 randomly generated problems with N ≤ 1000. The final solution given by the AM 

algorithm was very close to the actual solution. The approach to the solution was fast, and the 

algorithm took just a few iterations. The number of iterations was found to have only a weak 

dependence on the problem size. The overall time complexity was found to be in O(N2.2), which is 

very attractive.  

The AM algorithm uses k, n1, n2, m1 and m2 as user-selected parameters. It has been mentioned 

earlier that k = 4-5 is sufficient for a shift of the eigenvector for the largest eigenvalue to v. However, 

a higher value of 30 was found to be more suitable for computations. The parameters n1 and n2 (= 40 

and 20 respectively) define the number of SD steps taken by the algorithm. If these can be reduced, 

the algorithm would run faster. Work in this direction is in progress. The parameters m1 and m2 (= 20 

and 10 respectively) which appear in the initial calculations of the AM algorithm are relatively less 

critical and can be changed if desired. 



10 
 

 

No. 
Problem 

Name 
N 

Condition 
number 

Iterations 
reqd. 

σΔx Solved ? 

1 pores_1.mtx 30 1.81E+06 30 0.0004267 Yes 

2 d_ss.mtx 53 6.14E+08 8 7.332E-05 Yes 

3 impcol_b.mtx 59 1.64E+05 8 3.275E-05 Yes 

4 west0067.mtx 67 1.30E+02 4 1.568E-06 Yes 

5 steam3.mtx 80 4.99E+10 5 0.0002091 Yes 

6 d_dyn.mtx 87 7.42E+06 10 0.0002744 Yes 

7 d_dyn1.mtx 87 7.43E+06 11 0.0002571 Yes 

8 tols90.mtx 90 2.02E+04 1 1.179E-13 Yes 

9 olm100.mtx 100 1.53E+04 9 0.00011 Yes 

10 tub100.mtx 100 1.33E+04 47 0.0009838 Yes 

14 impcol_c.mtx 137 1.77E+04 2 1.417E-08 Yes 

17 bwm200.mtx 200 2.41E+03 21 0.0007754 Yes 

18 rdb200.mtx 200 3.45E+02 4 2.199E-05 Yes 

19 rdb200l.mtx 200 1.33E+02 3 1.324E-05 Yes 

21 ex1.mtx 216 3.30E+04 4 0.000119 Yes 

22 impcol_e.mtx 225 7.10E+06 35 0.0004946 Yes 

24 steam1.mtx 240 2.83E+07 1 1.235E-06 Yes 

25 tols340.mtx 340 2.03E+05 1 9.408E-15 Yes 

26 poisson2D.mtx 367 1.33E+02 4 7.775E-07 Yes 

27 impcol_d.mtx 425 2.06E+03 10 9.025E-05 Yes 

28 ex2.mtx 441 1.03E+10 51 0.007835 Yes 

29 rdb450.mtx 450 6.85E+02 7 6.565E-05 Yes 

30 rdb450l.mtx 450 2.10E+02 3 4.967E-06 Yes 

33 steam2.mtx 600 3.78E+06 1 0.0002216 Yes 

35 rdb800l.mtx 800 3.23E+02 5 3.249E-05 Yes 

36 ex22.mtx 839 3.28E+04 9 3.128E-05 Yes 

40 rdb968.mtx 968 3.78E+02 5 4.832E-05 Yes 

11 lns_131.mtx 131 1.28E+15 51 16.736189 No 

12 lnsp_131.mtx 131 1.28E+15 51 10.485417 No 

13 west0132.mtx 132 4.21E+11 51 23.293316 No 

15 west0156.mtx 156 2.31E+18 40 43.194152 No 

16 west0167.mtx 167 4.79E+10 51 23.046129 No 

20 impcol_a.mtx 207 1.35E+08 51 8.7734968 No 

23 saylr1.mtx 238 7.78E+08 51 44.046211 No 

31 olm500.mtx 500 3.73E+05 51 18.791045 No 

32 pores_3.mtx 532 5.61E+05 51 25.920135 No 

34 ex21.mtx 656 5.68E+08 51 10.6075 No 

37 ex25.mtx 848 5.11E+07 51 14.635598 No 

38 orsirr_2.mtx 886 6.33E+04 51 2.2424177 No 

39 DK01R.mtx 903 5.89E+07 51 13.488244 No 

        Table 3. Computational results for the problems listed in Table 2 
 

Results obtained for the problems selected from the SuiteSparse collection, presented in Tables 2 

and 3 indicate that 27 of the 40 problems selected were solved successfully by the AM algorithm, 

and the average number of iterations required was equal to 11, which is comparable to the number 

for the randomly generated problems. The remaining 13 problems did not get solved well. These 

problems covered a higher range of condition numbers. It may be noted that no preconditioners 



11 
 

were used in this work. If preconditioners are used, even these problems may get solved 

successfully. This is an aspect that is being investigated. 

Conclusions 

The AM algorithm presented here, which is based on three earlier geometrical observations, shows a 

low time complexity of O(N2.2) for randomly generated problems. It converges to the solution in a 

small number of iterations for N up to 1000. For problems selected from the SuiteSparse collection, 

most of the problems are successfully solved, and that too, without using any preconditioner. Most 

of the computational effort of the AM algorithm is for matrix-vector multiplications. Therefore, it 

can make full use of sparsity, and can be efficiently parallelised. 

 

Nomenclature 

A0  the coefficient matrix in the system A0x = b0 

b0  the right-hand side in the system A0x = b0 

A = A0
TA0 

Ak  = A0
TA0 + kvvT  

b = A0
Tb0 

bk  = A0
Tb0 + kwv                                               

d  the distance p1 - q1,0 

i iteration number 

j loop variable 

k number of times the new equation is added to the system of equations  

n1, n2, m1, m2   parameters in the AM algorithm 

N system size (the number of equations/unknowns) 

p1 , p2 points appearing in the AM algorithm 

q1 , q2 points appearing in the AM algorithm 

R residuals = b0 - A0x 

s solution vector for the system A0x = b0 

SSres sum of squares of the residuals 

v coefficient vector in the new equation, vTx = w 

w right-hand side of the new equation, vTx = w 

w1 , w2 defined in the AM algorithm (steps 13 and 14) 

x the vector of unknowns 

z1 , z2  vectors with elements N(0,1) 

σres root mean square value of the residuals (= R) 

σres,crit critical value of σres 

σΔx  root mean square value of the deviations (= x – s) 
 

Subscripts 

o            initial values 

i ith iteration  
 



12 
 

Superscripts 

T transpose of a matrix 

References 

[1] Gentle, J. E., 
      Matrix Algebra - Theory, Computations, and Applications in Statistics 
      Pub. Springer, New York, USA (2007) 
 
[2] Shewchuk J. R., 
      An Introduction to the Conjugate Gradient Method 
      https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf  (1994) 
 
[3] Nesterov, Y., 
      A Method of Solving a Convex Programming Problem with Convergence Rate O(1/k^2) 
      Soviet Mathematics Doklady, 27, 372-376 (1983) 
  
[4] Sutskever I., Martens J., Dahl G., and Hinton G., 
      On the Importance of Initialization and Momentum in Deep Learning 
      Proceedings of the 30th International Conference on Machine Learning,  
      PMLR 28(3), 1139-1147 (2013) 
 
[5] Strassen, V. 
      Gaussian Elimination is not Optimal 
      Numer. Math. 13 (4), 354–356 (1969) 
 
[6] Coppersmith, D. and Winograd, S. 
      Matrix multiplication via arithmetic progressions 
      Journal of Symbolic Computation, 9 (3): 251 (1990) 
 
[7] Peng R. and Vempala S. 
      Solving Sparse Linear Systems Faster than Matrix Multiplication 
      arXiv:2007.10254 [cs.DS] (2021) 

[8] Patwardhan, V., 
      Solution of a NxN System of Linear algebraic Equations: 1 -- The Steepest Descent Method  

      Revisited 
      https://doi.org/10.48550/arXiv.2206.07482 (2022a) 
 
[9] Patwardhan V., 
      Some Geometrical Properties of a NxN System of Linear Equations 
      doi: 10.13140/RG.2.2.27971.27687 (2022b) 
 
[10] Timothy A. Davis and Yifan Hu. 2011.  

      The University of Florida Sparse Matrix Collection  

      ACM Transactions on Mathematical Software 38, 1, Article 1 (December 2011), 25 pages 

      doi: https://doi.org/10.1145/2049662.2049663 

 

 


