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Center Of A Closed Convex Polytope: A New Definition 

 

V. S. Patwardhan1 

Abstract 

A closed convex polytope in n dimensions is defined by the usual linear inequality constraints 

specified as Ax ≤ b. Let P be a strictly interior point within the closed polytope. If we draw a line 

through P which is parallel to the ith axis, it will intersect the polytope boundary at two points. Let Si 

be the line segment connecting these two points. A new center, termed here as the bisection center, 

or the BI center, is defined as that interior point which bisects the segments Si for all values of i, i.e. i 

= 1 to n. The existence and uniqueness of such a center for the general case has been shown. An 

algorithm is proposed for calculating the BI center iteratively. Preliminary computational results are 

presented for two simple polytopes for illustration. The algorithm is expected to be computationally 

efficient, particularly for highly sparse matrices, since (a) it can take full advantage of the sparse 

structure of the A matrix, (b) it involves no matrix inversion, and (c) the A matrix remains unchanged 

during calculations. Application of these ideas to larger size problems, including linear programming 

problems will be presented in a later publication.  

 

1. Introduction 

Defining and calculating the center of a closed convex polytope is a problem that has attracted 

interest for a long time. Many definitions have been used for the center, based on different 

considerations such as the center of mass of the entire polytope, the centroid i.e. the center of mass 

of all vertices, the center of the largest inscribed sphere (or an ellipsoid), the center of the smallest 

sphere (or ellipsoid) which includes the polytope, the analytical center, the weighted projection 

center, center based on orthogonal projections on to polytope faces etc. All these definitions lead to 

different points as centers. The computation of these centers involves different degrees of 

computational effort. Some of these and others have been summarised earlier (for example, see A. 

Moretti [1], K. G. Murty [2]). One of the motivations for these centers has been the fact that most 

interior point algorithms for solving linear programming problems involve a centering step at 

periodic intervals. Therefore any method which leads to efficient calculation of a uniquely defined 

center may become useful in interior point linear programming algorithms. 

In this paper, we present the definition of a new center termed here as the BI center, some 

discussion on the existence and uniqueness of the BI center and computational results obtained for 

a couple of simple polytopes. 

2. Definition of the BI center 

The BI center is based on the concept of the bisection of line segments within the polytope, which  
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are drawn from any interior point and are parallel to one of the coordinate axes. Let us start with a 

two dimensional example for illustrating the concept. Figure 1 shows a two dimensional triangle as a 

simple example of a closed convex polytope. The figure shows an interior point P and a line in the x 

direction drawn through P. The line intersects the triangle boundary at P1 and P2. The point Q is the 

midpoint of the line segment P1P2, and bisects it. It is obvious that if P is moved along the line 

segment P1P2, the corresponding point Q does not change. However, if P is moved anywhere else, 

then Point Q will move as well. Thus the point Q depends only on the y-coordinate of P. By moving P 

over the entire triangle (i.e. the entire interior region of the polytope), we get a locus of the point Q, 

which is shown by the line Lx in Figure 1. The subscript x in Lx implies that it is the locus of midpoints 

of line segments parallel to the x-axis, which are contained in the polytope. In other words, any point 

on Lx bisects the line segment drawn through that point in the x-direction. 

 

We can follow a similar procedure, by drawing line segments in the y direction in the same triangle, 

to get a different line, shown as Ly in Figure 2. Any point on Ly bisects the line segment drawn 

through that point in the y-direction. The line Lx is also shown in Figure 2. Point B shown in this figure 

is the intersection of lines Lx and Ly, and is the only point in the polytope which bisects both the line 

segments (i.e. a line segment in the x direction, and another one in the y direction) drawn through it, 

and represents the BI center of the triangle. The BI center for more complex cases can be shown in a 

similar manner. Figure 3, for example, shows the BI center for a two dimensional convex polytope 

with five sides, i.e. a pentagon. 

We can make a few important observations from Figure 2. The lines Lx and Ly are not entirely straight 

lines, but consist of straight line segments. They show a sharp turn at specific points, corresponding 
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 to the vertices of the triangle. Thus Lx and Ly are continuous but not differentiable. Secondly, the 

length of the two line segments drawn through point B (which are bisected by point B) can be widely 

different, for example, if one of the angles of the triangle is very small, leading to a sharp, wedge-like 

shape. 

The concept of the BI center can be easily generalised for higher dimensions. For example, let us 

consider a convex polytope in three dimensions. Imagine a large number of line segments, parallel to 

the X axis, drawn inside this polytope. The set of midpoints of these line segments defines a two 

dimensional surface which can be denoted as Sx. Similarly, by considering line segments drawn in the 

Y and Z directions, we can get two more two dimensional surfaces, i.e. Sy and Sz. These three 

surfaces intersect at a single point, in general, which is the BI center of the polytope. 

For a closed convex polytope in an n-dimensional space, this procedure gives us n subspaces, each of 

which is (n-1) dimensional. They intersect at a single point, in general, which is the BI center of the 

closed convex polytope. The BI center is unique, in general, for an n-dimensional polytope, as shown 

in a later section.  

3. Characterisation of the BI center 

The geometrical discussion given so far defines the BI center. We will later present calculations 

where we start from an interior point and approach the BI center iteratively. Before doing that, let 

us first see how we can characterise the BI center, so that we can determine how far or how close 

any given interior point is, from the BI center. We define a function here which becomes equal to 1 

at the BI center and is equal to zero at the polytope boundary. 

Figure 1 shows the point Q which bisects the line segment P1P2 drawn through point P, and is parallel 

to the x axis. We define a function Fx at the point P as 

                   
   

 
(1) 

We define fx as the fraction PP1/P1P2. Since P1P2 = PP1 + PP2, we can Express Fx as 

                 
 

(2) 

It is obvious that fx goes from 0 to 1 as P moves from P1 to P2. Moreover, Fx is zero at both P1 and P2, 

and goes through a single maximum of Fx = 1 at fx = 0.5 which corresponds to Q, the midpoint of 

P1P2. It is also obvious that the second derivative of Fx w.r.t. x is negative everywhere along P1P2. At 

any interior point P within the polytope, Fx has some value between 0 and 1 depending on the 

location of P. The factor of 4 has been used just to make Fx equal to 1 at Q. A similar function Fy can 

be defined based on the line segment through P drawn in the y direction. We now define a 

composite function F as 

         

 

(3) 

Referring to Figure 2, it is obvious that F is zero at the triangle boundary, is equal to 1 at the BI 

center, and has some value between 0 and 1 everywhere else. For a closed convex polytope in n 

dimensions, the composite function at any interior point P can be written as 
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(4) 

where Fxi is based on the line segment drawn through P, in a direction parallel to the ith coordinate 

axis. Even in this case, F becomes 1 only at the BI center, and is zero at the polytope boundary. 

4. Uniqueness of the BI center 

To prove the uniqueness of the BI center in an n-dimensional closed convex polytope, let us first 

show that the first derivative of Fxi along any straight line segment, whose end points lie on the 

polytope boundary, is zero only at one point along that line segment. 

 

Let us consider the function Fxi. Let P be a strictly interior point. Consider an arbitrary straight line Lp 

drawn through P, which intersects the polytope boundary at points P1 and P2. Consider two lines L1 

and L2, which are drawn through P1 and P2 respectively in a direction parallel to the xi axis. Now 

consider the intersection of the polytope and the two dimensional plane defined by these three 

lines. This intersection is a two dimensional closed convex polygon, and is shown partly in Figure 4 

with bold continuous lines. First consider the case where the points P1 and Q2 lie on the same side of 

the polygon (i.e. the same face of the polytope), and so do Q1 and P2. (The case where they lie on 

different sides of the polygon is considered later). T is the intersection of lines P1Q2 and P2Q1. The 

figure also shows a line R1 drawn through T, along with its three intersections S1, S2 and S3. Triangles 

TP1S1 and TQ2S2 are similar, and so are triangles TP1Q1 and TQ2P2. Therefore the ratios Q2S2 / Q2P2 

and P1S1 / P1Q1 are equal, and so are Fxi values at any point along the line R1. Thus, Fxi values at S1, S2 
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and S3 Are equal. (It should be borne in mind that Fxi value at S3 is determined by the ratio P3S3 / 

P3Q3, and not P1S3 / P1P2).  

Let us consider the variation of function Fxi along the line L1. Fxi and its derivative are given by 

                   
   (5) 

     
  

 
 

   
 
  

   
  

(6) 

 

where x is the distance P1S1 and Q1x is the distance P1Q1. Equations (5) and (6) show that Fxi is 0 for x 

= 0 and x = Q1x, and dFxi/dx is zero only at one point, i.e. at x = Q1x/2. 

 

Let us now consider the variation of function Fxi along the line Lp. Figure 5 shows a general point P on 

the line Lp. The distance P1P is denoted as v. Q is the intersection of lines TP and P1Q1. Lines PR and 

TS are drawn perpendicular to line P1Q1. The coordinates of all these points are also indicated in 

Figure 5. Now, similar triangles PRQ and TSQ give 

 
 

        

      
 
    

  
 

 

(7) 

Algebraic manipulation gives 
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(8) 

where the constant K is given by 

 
       

       

  
 

 

(9) 

From Figure 5, it is obvious that Ty > Uy. Since tanθ = Uy/x0, we can write 

                  (10) 

Thus, K is always positive. Differentiation of Eqn (8) followed by algebraic manipulation gives 

   

  
   

  

  
 

(11) 

 

This implies that dv/dx > 0 . This is consistent with the observation from Figure 5 that, as point P 

moves along the line Lp, point Q moves in the same direction too. The derivative of Fxi along the 

direction Lp can be written as 

     
  

 
    
  

  

  
  

(12) 

 

We have already seen that dv/dx > 0, and dFxi /dx vanishes only at a single value of x. Therefore we 

can conclude that dFxi /dv also vanishes only at a single value of v. This is valid for any coordinate axis 

xi, i = 1 to n. 

We are interested in showing the uniqueness of the BI center. Suppose it is not unique. In that case 

there will be at least two BI centers, i.e. B1 and B2. Both these points would have F = 1, and at both 

these points, dFxi /dv would vanish, for all values of i. Let us consider the line joining B1 and B2, 

extended in both directions to intersect the polytope boundary at P1 and P2. Thus, dFxi /dv must 

vanish at least at two different points along the line segment P1P2. This clearly contradicts the 

conclusion stated above, and shows that the BI center is indeed unique. 

Case where the points Q1 and P2 lie on different sides of the polygon: In the discussion above, it was 

assumed that points Q1 and P2 lie on the same side of the polygon. Figure 6 (which is a simplified 

Figure 5) shows several lines inside triangle P1Q1P2. Each of these lines passes through Point T, and 

its intersections along sides P1P2 and P1Q1 represent two points with equal values of Fxi. The fact that 

these lines do not intersect among themselves, is equivalent to saying that dv/dx > 0, as argued 

above. Now let us consider a case where points Q1 and P2 do not lie on the same face (i.e. side) of 

the polygon. This situation is shown in Figure 7. Here the point P2 does not lie on the same face 

(i.e.side) of the polygon as point Q1. The two polygon sides corresponding to points P2 and Q1 meet 

at point R. Line L2 is a line drawn through R and is parallel to the Xi axis. In order to mark points 

having equal Fxi along lines L1 and Lp we need to consider two regions. In the region between lines L1 

and L2, we follow the same procedure as before, using point T to draw a fan of lines. In the region 

between lines L2 and L3, we now have to use point Z, which is the intersection of the two polygon 
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faces (i.e. sides) corresponding to points Q1 and P2, to draw a fan of lines. The resulting equal-Fxi lines 

are shown in Figure 7. Some of these lines consist of two line segments. However these composite 

solid lines drawn inside the region P1Q1RP2 do not intersect among themselves. This is equivalent to 

saying that dv/dx > 0, and therefore dFxi /dv vanishes only for one value of v (i.e. only at one single 

point along line Lp).  

5. Illustrative calculations  

Let us consider a small problem in two dimensions as an illustration. The polytope is defined by the 

constraints given below. 

 

Example 1: 

          

         

           

Figure 8 shows the polytope (a triangle in this case), contour lines for F, and the BI center.  The 

contour lines get elongated in the direction of the vertices of the triangle, and become smoother as 

we move towards the BI center. 
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6. Calculation of the BI center: preliminary results 

The calculation of the BI center is done iteratively, starting from a strictly interior point. It is assumed 

here that such a point is known. (If not, one can be located as explained later.) Figure 9 shows one 

step of the procedure graphically. The interior point P is the starting point. Qx is the midpoint of the 

line segment lying inside the polytope, drawn in the x direction. Similarly, Qy is the midpoint of the 

line segment lying inside the polytope, drawn in the y direction. The vector addition of PQx and PQy 

gives the vector PR. If we take PR itself as the step, R would be the point reached after one step. 

However, we have used a conservative step size of PR/2 here, so that we reach the point S, which is 

the midpoint of line PR, after one step. (The point S may be infeasible, as may happen sometimes. In 

that case, the step size has to be reduced further, so that S remains strictly feasible.) Now S can be 

used as the starting point for the next step. This procedure, used iteratively, approaches the BI 

center. The approach to the BI center is characterised by the increasing F values which approach 1 

closely. The iterative approach to the BI center (for Example 1) from different starting points, close 

to the polytope boundary, is shown in Figure 10, which also shows the contour lines of F. 

Let us consider a larger problem in four dimensions as given below. 

Example 2: 
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This example has five constraints defining the polytope, and in addition, all four variables are 

nonnegative, which is equivalent to four more constraints. If we apply the centering algorithm to this 

polytope, starting from the arbitrary point (1, 2, 2.5, 1.3) we approach the BI center iteratively as 

shown in Figure 11 and Table 1. The values of Xi (i = 1 to 4) are seen to approach the BI center 

asymptotically. The function F becomes 0.99 after 12 iterations, and 0.999 after 24 iterations. In 

other words, we can approach the BI center very closely in a reasonable number of iterations.  

 

Iter. 
No. 

x1 x2 x3 x4 F 

1 1.00 2.00 2.50 1.30 0.329 

2 1.31 2.30 2.56 1.87 0.616 

3 1.54 2.47 2.66 2.21 0.798 

4 1.71 2.57 2.77 2.41 0.895 

5 1.84 2.63 2.86 2.52 0.938 

6 1.95 2.66 2.96 2.58 0.960 

7 2.04 2.67 3.05 2.60 0.971 

8 2.12 2.68 3.12 2.60 0.978 

9 2.19 2.69 3.19 2.58 0.983 

10 2.25 2.70 3.24 2.56 0.987 

11 2.30 2.70 3.29 2.53 0.989 

12 2.34 2.71 3.33 2.50 0.991 

13 2.38 2.72 3.37 2.47 0.993 

14 2.41 2.72 3.40 2.44 0.994 

15 2.44 2.73 3.42 2.42 0.995 

16 2.46 2.74 3.45 2.39 0.996 

17 2.48 2.74 3.47 2.36 0.996 

19 2.51 2.76 3.51 2.32 0.997 

20 2.53 2.77 3.53 2.30 0.997 

21 2.54 2.77 3.54 2.28 0.998 

22 2.55 2.78 3.56 2.26 0.998 

23 2.56 2.79 3.57 2.24 0.998 

24 2.56 2.79 3.58 2.23 0.999 

 

Table 1. Iterative approach to the BI center for Example 2. 

7. Discussion 

The main step in the iterative calculation of the BI center is shown in Figure 9. The calculation of Qx 

from known P involves travelling in a direction parallel to the x axis, and calculating the intersections 

with all constraints defining the polytope. Qy is calculated similarly. For an n dimensional polytope, 

the distance travelled in the +Xk direction, from point P, before hitting constraint i is dik+, given by 

                 
 

                                  (13) 
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And that in the -Xk direction is given by 

 
                

 

                                  

 

(14) 

The distance dik from P to the midpoint Qxk is given by 

 
                            

 
(15) 

The direction for the iterative step for approaching the BI center is the vector of all dk values. The 

quantity inside the bracket in equations (13) and (14) is positive since P is an interior point. The 

calculation of dik thus involves just division with nonzero elements of the A matrix. If A is large and 

sparse, then these calculations take full advantage of the sparsity. The A matrix does not change 

during these calculations, and there is no matrix inversion involved. If the number of iterations 

required is not too large, then the BI center can be approached in a computationally efficient 

manner. Computations with larger problems are in progress. 

The calculation of the BI center starts from an interior point. It has been assumed here that an 

interior point is known. However, if one is not known, then techniques such as the introduction of an 

artificial variable followed by a procedure to reduce it to zero have to be used. This technique is well 

known in linear programming. 
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8. Degeneracy of the BI center 

In this paper it has been shown that the BI center is unique in general. However there are cases 

where this is not true. Figure 12 shows a two dimensional example, where two sides of the polygon 

are parallel to each other. Points B1 and B2 are BI centers as both of them bisect the horizontal and 

vertical (dotted) lines passing through them. Moreover, any point along the line B1B2 is also a BI 

center. This degeneracy arises essentially because of the parallel sides of the polygon. Similar 

examples can be constructed in higher dimensions. This kind of degeneracy is known for centers 

defined differently, such as the well known Chebyshev center. 

9. Conclusions 

A new definition for the center of a closed convex polytope in n dimensions has been proposed. The 

newly defined center is termed as the BI center. The existence and uniqueness of the BI center has 

been shown for the general case. An iterative algorithm has been proposed for calculating the 

position of the center, starting from any interior point. The convergence characteristics of this 

algorithm are illustrated with computations for two small polytopes. It has been shown that special 

conditions can lead to degeneracy and multiplicity of the BI center. Work is in progress which is 

aimed at the application of these ideas to larger size problems, including linear programming 

problems. 
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