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Abstract

A closed convex polytope in n dimensions is defined by the usual linear inequality constraints
specified as Ax < b. Let P be a strictly interior point within the closed polytope. If we draw a line
through P which is parallel to the i™ axis, it will intersect the polytope boundary at two points. Let S;
be the line segment connecting these two points. A new center, termed here as the bisection center,
or the Bl center, is defined as that interior point which bisects the segments S; for all values of i, i.e. i
=1 to n. The existence and uniqueness of such a center for the general case has been shown. An
algorithm is proposed for calculating the Bl center iteratively. Preliminary computational results are
presented for two simple polytopes for illustration. The algorithm is expected to be computationally
efficient, particularly for highly sparse matrices, since (a) it can take full advantage of the sparse
structure of the A matrix, (b) it involves no matrix inversion, and (c) the A matrix remains unchanged
during calculations. Application of these ideas to larger size problems, including linear programming
problems will be presented in a later publication.

1. Introduction

Defining and calculating the center of a closed convex polytope is a problem that has attracted
interest for a long time. Many definitions have been used for the center, based on different
considerations such as the center of mass of the entire polytope, the centroid i.e. the center of mass
of all vertices, the center of the largest inscribed sphere (or an ellipsoid), the center of the smallest
sphere (or ellipsoid) which includes the polytope, the analytical center, the weighted projection
center, center based on orthogonal projections on to polytope faces etc. All these definitions lead to
different points as centers. The computation of these centers involves different degrees of
computational effort. Some of these and others have been summarised earlier (for example, see A.
Moretti [1], K. G. Murty [2]). One of the motivations for these centers has been the fact that most
interior point algorithms for solving linear programming problems involve a centering step at
periodic intervals. Therefore any method which leads to efficient calculation of a uniquely defined
center may become useful in interior point linear programming algorithms.

In this paper, we present the definition of a new center termed here as the Bl center, some
discussion on the existence and uniqueness of the Bl center and computational results obtained for
a couple of simple polytopes.

2. Definition of the Bl center

The Bl center is based on the concept of the bisection of line segments within the polytope, which
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are drawn from any interior point and are parallel to one of the coordinate axes. Let us start with a
two dimensional example for illustrating the concept. Figure 1 shows a two dimensional triangle as a
simple example of a closed convex polytope. The figure shows an interior point P and a line in the x
direction drawn through P. The line intersects the triangle boundary at P, and P,. The point Q is the
midpoint of the line segment P,P,, and bisects it. It is obvious that if P is moved along the line
segment P,P,, the corresponding point Q does not change. However, if P is moved anywhere else,
then Point Q will move as well. Thus the point Q depends only on the y-coordinate of P. By moving P
over the entire triangle (i.e. the entire interior region of the polytope), we get a locus of the point Q,
which is shown by the line L, in Figure 1. The subscript x in L, implies that it is the locus of midpoints
of line segments parallel to the x-axis, which are contained in the polytope. In other words, any point
on L, bisects the line segment drawn through that point in the x-direction.
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Figure 1. Locus of the bisector of line segments in the X direction

We can follow a similar procedure, by drawing line segments in the y direction in the same triangle,
to get a different line, shown as L, in Figure 2. Any point on L, bisects the line segment drawn
through that point in the y-direction. The line L, is also shown in Figure 2. Point B shown in this figure
is the intersection of lines L, and L,, and is the only point in the polytope which bisects both the line
segments (i.e. a line segment in the x direction, and another one in the y direction) drawn through it,
and represents the Bl center of the triangle. The Bl center for more complex cases can be shown in a
similar manner. Figure 3, for example, shows the Bl center for a two dimensional convex polytope
with five sides, i.e. a pentagon.

We can make a few important observations from Figure 2. The lines L, and L, are not entirely straight
lines, but consist of straight line segments. They show a sharp turn at specific points, corresponding
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Figure 2. The BI center, as the intersection of lines Ly and Ly
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Figure 3. The Bl center and lines Ly and Ly for a pentagon



to the vertices of the triangle. Thus L, and L, are continuous but not differentiable. Secondly, the
length of the two line segments drawn through point B (which are bisected by point B) can be widely
different, for example, if one of the angles of the triangle is very small, leading to a sharp, wedge-like
shape.

The concept of the Bl center can be easily generalised for higher dimensions. For example, let us
consider a convex polytope in three dimensions. Imagine a large number of line segments, parallel to
the X axis, drawn inside this polytope. The set of midpoints of these line segments defines a two
dimensional surface which can be denoted as S,. Similarly, by considering line segments drawn in the
Y and Z directions, we can get two more two dimensional surfaces, i.e. S, and S,. These three
surfaces intersect at a single point, in general, which is the Bl center of the polytope.

For a closed convex polytope in an n-dimensional space, this procedure gives us n subspaces, each of
which is (n-1) dimensional. They intersect at a single point, in general, which is the Bl center of the
closed convex polytope. The Bl center is unique, in general, for an n-dimensional polytope, as shown
in a later section.

3. Characterisation of the Bl center

The geometrical discussion given so far defines the Bl center. We will later present calculations
where we start from an interior point and approach the Bl center iteratively. Before doing that, let
us first see how we can characterise the Bl center, so that we can determine how far or how close
any given interior point is, from the Bl center. We define a function here which becomes equal to 1
at the Bl center and is equal to zero at the polytope boundary.

Figure 1 shows the point Q which bisects the line segment P1P, drawn through point P, and is parallel
to the x axis. We define a function F, at the point P as

Fe = 4 % PPy % PP, /(P P;)? (1)
We define f, as the fraction PP,/P,P,. Since P,P, = PP, + PP,, we can Express F, as
E=4xfix(1— f) (2)

It is obvious that f, goes from 0 to 1 as P moves from P, to P,. Moreover, F, is zero at both P, and P,,
and goes through a single maximum of F, = 1 at f, = 0.5 which corresponds to Q, the midpoint of
P.P,. It is also obvious that the second derivative of F, w.r.t. x is negative everywhere along P,P,. At
any interior point P within the polytope, F, has some value between 0 and 1 depending on the
location of P. The factor of 4 has been used just to make F, equal to 1 at Q. A similar function F, can
be defined based on the line segment through P drawn in the y direction. We now define a
composite function F as

F =F *F, (3)

Referring to Figure 2, it is obvious that F is zero at the triangle boundary, is equal to 1 at the BI
center, and has some value between 0 and 1 everywhere else. For a closed convex polytope in n
dimensions, the composite function at any interior point P can be written as



F= 1_[ Fy, (4)

where F,; is based on the line segment drawn through P, in a direction parallel to the i coordinate
axis. Even in this case, F becomes 1 only at the Bl center, and is zero at the polytope boundary.

4. Uniqueness of the Bl center

To prove the uniqueness of the Bl center in an n-dimensional closed convex polytope, let us first
show that the first derivative of F,; along any straight line segment, whose end points lie on the
polytope boundary, is zero only at one point along that line segment.

Figure 4. A cross section of the polytope in two dimensions

Let us consider the function F,;. Let P be a strictly interior point. Consider an arbitrary straight line L,
drawn through P, which intersects the polytope boundary at points P, and P,. Consider two lines L,
and L,, which are drawn through P, and P, respectively in a direction parallel to the x; axis. Now
consider the intersection of the polytope and the two dimensional plane defined by these three
lines. This intersection is a two dimensional closed convex polygon, and is shown partly in Figure 4
with bold continuous lines. First consider the case where the points P, and Q, lie on the same side of
the polygon (i.e. the same face of the polytope), and so do Q; and P,. (The case where they lie on
different sides of the polygon is considered later). T is the intersection of lines P,Q, and P,Q;. The
figure also shows a line R, drawn through T, along with its three intersections S;, S, and S;. Triangles
TP,S; and TQ,S, are similar, and so are triangles TP,Q; and TQ,P,. Therefore the ratios Q,S, / Q,P,
and P,S, / P,Q; are equal, and so are F, values at any point along the line R;. Thus, F,; values at S, S,



and S; Are equal. (It should be borne in mind that F, value at S3 is determined by the ratio P5S; /
Ps;Qs, and not P153/ P1P2).

Let us consider the variation of function F,; along the line L;. F,; and its derivative are given by

Fpi =4 x (Q1x — x)/lex (5)
dFy; _ 4 8x (6)
dx B le lex

where x is the distance P,S; and Qu, is the distance P,Q;. Equations (5) and (6) show that F,; is O for x
=0 and x = Qy,, and dF;/dx is zero only at one point, i.e. at x = Q,,/2.
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Figure 5. Variation of Fy along the line L,

Let us now consider the variation of function F,; along the line L,. Figure 5 shows a general point P on
the line L,. The distance P;P is denoted as v. Q is the intersection of lines TP and P,Q;. Lines PR and
TS are drawn perpendicular to line P;Q;. The coordinates of all these points are also indicated in
Figure 5. Now, similar triangles PRQ and TSQ give

vecosd —x  xg—X (7)

v sin@ T,

Algebraic manipulation gives



1 K sinf (8)
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where the constant K is given by

Xo Sinf (9)

Ty

K = cosf —

From Figure 5, it is obvious that T, > U,. Since tan® = U,/x,, we can write
K = cos6 (1—U,/T,) (10)
Thus, K is always positive. Differentiation of Eqn (8) followed by algebraic manipulation gives

dv X v_2 (11)

dx x2

This implies that dv/dx > 0 . This is consistent with the observation from Figure 5 that, as point P
moves along the line L,, point Q moves in the same direction too. The derivative of F,; along the
direction L, can be written as

dei _ del dv (12)

dv ~ dx / dx

We have already seen that dv/dx > 0, and dF,; /dx vanishes only at a single value of x. Therefore we
can conclude that dF,;/dv also vanishes only at a single value of v. This is valid for any coordinate axis
X, i=1ton.

We are interested in showing the uniqueness of the Bl center. Suppose it is not unique. In that case
there will be at least two Bl centers, i.e. B; and B,. Both these points would have F = 1, and at both
these points, dF,; /dv would vanish, for all values of i. Let us consider the line joining B; and B,
extended in both directions to intersect the polytope boundary at P, and P,. Thus, dF,;/dv must
vanish at least at two different points along the line segment P,P,. This clearly contradicts the
conclusion stated above, and shows that the Bl center is indeed unique.

Case where the points Q; and P, lie on different sides of the polygon: In the discussion above, it was
assumed that points Q; and P, lie on the same side of the polygon. Figure 6 (which is a simplified
Figure 5) shows several lines inside triangle P,Q;P,. Each of these lines passes through Point T, and
its intersections along sides P;P, and P,Q; represent two points with equal values of F,;. The fact that
these lines do not intersect among themselves, is equivalent to saying that dv/dx > 0, as argued
above. Now let us consider a case where points Q; and P, do not lie on the same face (i.e. side) of
the polygon. This situation is shown in Figure 7. Here the point P, does not lie on the same face
(i.e.side) of the polygon as point Q;. The two polygon sides corresponding to points P, and Q; meet
at point R. Line L, is a line drawn through R and is parallel to the X; axis. In order to mark points
having equal F,; along lines L; and L, we need to consider two regions. In the region between lines L,
and L,, we follow the same procedure as before, using point T to draw a fan of lines. In the region
between lines L, and L;, we now have to use point Z, which is the intersection of the two polygon
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Figure 6. Corresponding points (with equal Fy) along lines Ly and L
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Figure 7. Corresponding points (with equal Fy) along lines L1 and L, for a complex case



faces (i.e. sides) corresponding to points Q; and P,, to draw a fan of lines. The resulting equal-F, lines
are shown in Figure 7. Some of these lines consist of two line segments. However these composite
solid lines drawn inside the region P,Q;RP, do not intersect among themselves. This is equivalent to
saying that dv/dx > 0, and therefore dF,;/dv vanishes only for one value of v (i.e. only at one single
point along line L,).

5. Illlustrative calculations

Let us consider a small problem in two dimensions as an illustration. The polytope is defined by the
constraints given below.

Example 1:
08x—y<2
x+2y <18
5x+3y=>=30
10
8
Bl center
F=1
6
Y

Figure 8. Contour lines for F for example 1

Figure 8 shows the polytope (a triangle in this case), contour lines for F, and the Bl center. The
contour lines get elongated in the direction of the vertices of the triangle, and become smoother as
we move towards the Bl center.
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Figure 9. One step in the calculation of Bl center

Bl center

Figure 10. Approach to the BI center
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6. Calculation of the Bl center: preliminary results

The calculation of the Bl center is done iteratively, starting from a strictly interior point. It is assumed
here that such a point is known. (If not, one can be located as explained later.) Figure 9 shows one
step of the procedure graphically. The interior point P is the starting point. Q, is the midpoint of the
line segment lying inside the polytope, drawn in the x direction. Similarly, Q, is the midpoint of the
line segment lying inside the polytope, drawn in the y direction. The vector addition of PQ, and PQ,
gives the vector PR. If we take PR itself as the step, R would be the point reached after one step.
However, we have used a conservative step size of PR/2 here, so that we reach the point S, which is
the midpoint of line PR, after one step. (The point S may be infeasible, as may happen sometimes. In
that case, the step size has to be reduced further, so that S remains strictly feasible.) Now S can be
used as the starting point for the next step. This procedure, used iteratively, approaches the Bl
center. The approach to the Bl center is characterised by the increasing F values which approach 1
closely. The iterative approach to the Bl center (for Example 1) from different starting points, close
to the polytope boundary, is shown in Figure 10, which also shows the contour lines of F.

4.0
35 P——— — X, |
. // :
2
2.5 A — X, |
XF 2.0 — Xa |
, . _~

LS/
1.0 / P

0.5 o
! F=0.99 F=0.999

0 5 10 15 20 25 30

Iteration no.

Figure 11. Approach of X values and F to their final values for Example 2

Let us consider a larger problem in four dimensions as given below.
Example 2:

X1+ x, —x3+x, <8

X1 +05x, —x3 <3

05x; —2x,+x3 <2
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—x;+05x,—05x, <3
X1 +3x,+15x3+2x, <25
X1,%X9,%X3,%X4 =0

This example has five constraints defining the polytope, and in addition, all four variables are
nonnegative, which is equivalent to four more constraints. If we apply the centering algorithm to this
polytope, starting from the arbitrary point (1, 2, 2.5, 1.3) we approach the Bl center iteratively as
shown in Figure 11 and Table 1. The values of X; (i = 1 to 4) are seen to approach the Bl center
asymptotically. The function F becomes 0.99 after 12 iterations, and 0.999 after 24 iterations. In
other words, we can approach the Bl center very closely in a reasonable number of iterations.

Iter.
No. X1 X2 X3 Xg F
1 1.00 2.00 2.50 1.30 0.329
2 1.31 2.30 2.56 1.87 0.616
3 1.54 2.47 2.66 2.21 0.798
4 1.71 2.57 2.77 2.41 0.895
5 1.84 2.63 2.86 2.52 0.938
6 1.95 2.66 2.96 2.58 0.960
7 2.04 2.67 3.05 2.60 0.971
8 2.12 2.68 3.12 2.60 0.978
9 2.19 2.69 3.19 2.58 0.983
10 2.25 2.70 3.24 2.56 0.987
11 2.30 2.70 3.29 2.53 0.989
12 2.34 2.71 3.33 2.50 0.991
13 2.38 2.72 3.37 2.47 0.993
14 2.41 2.72 3.40 2.44 0.994
15 2.44 2.73 3.42 2.42 0.995
16 2.46 2.74 3.45 2.39 0.996
17 2.48 2.74 3.47 2.36 0.996
19 2.51 2.76 3.51 2.32 0.997
20 2.53 2.77 3.53 2.30 0.997
21 2.54 2.77 3.54 2.28 0.998
22 2.55 2.78 3.56 2.26 0.998
23 2.56 2.79 3.57 2.24 0.998
24 2.56 2.79 3.58 2.23 0.999

Table 1. Iterative approach to the Bl center for Example 2.
7. Discussion

The main step in the iterative calculation of the Bl center is shown in Figure 9. The calculation of Q,
from known P involves travelling in a direction parallel to the x axis, and calculating the intersections
with all constraints defining the polytope. Q, is calculated similarly. For an n dimensional polytope,
the distance travelled in the +X direction, from point P, before hitting constraint i is dy,, given by

digs = b; — z a;j P; /aik for all k where a; > 0 (13)

J
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And that in the -X, direction is given by

dp_ =1\ b; — z a;j P; /aik for all k where a; <0 (14)
j

The distance d;, from P to the midpoint Qy is given by

di = [min(dy4) + max(di-)]/2 (15)

The direction for the iterative step for approaching the Bl center is the vector of all d values. The
guantity inside the bracket in equations (13) and (14) is positive since P is an interior point. The
calculation of dj thus involves just division with nonzero elements of the A matrix. If Ais large and
sparse, then these calculations take full advantage of the sparsity. The A matrix does not change
during these calculations, and there is no matrix inversion involved. If the number of iterations
required is not too large, then the Bl center can be approached in a computationally efficient
manner. Computations with larger problems are in progress.

The calculation of the Bl center starts from an interior point. It has been assumed here that an
interior point is known. However, if one is not known, then techniques such as the introduction of an
artificial variable followed by a procedure to reduce it to zero have to be used. This technique is well
known in linear programming.

A line of Bl centers

X —

Figure 12. A degenerate case where the Bl center is not unique
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8. Degeneracy of the Bl center

In this paper it has been shown that the Bl center is unique in general. However there are cases
where this is not true. Figure 12 shows a two dimensional example, where two sides of the polygon
are parallel to each other. Points B; and B, are Bl centers as both of them bisect the horizontal and
vertical (dotted) lines passing through them. Moreover, any point along the line BB, is also a BI
center. This degeneracy arises essentially because of the parallel sides of the polygon. Similar
examples can be constructed in higher dimensions. This kind of degeneracy is known for centers
defined differently, such as the well known Chebyshev center.

9. Conclusions

A new definition for the center of a closed convex polytope in n dimensions has been proposed. The
newly defined center is termed as the Bl center. The existence and uniqueness of the Bl center has
been shown for the general case. An iterative algorithm has been proposed for calculating the
position of the center, starting from any interior point. The convergence characteristics of this
algorithm are illustrated with computations for two small polytopes. It has been shown that special
conditions can lead to degeneracy and multiplicity of the Bl center. Work is in progress which is
aimed at the application of these ideas to larger size problems, including linear programming
problems.
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