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Abstract

The NxN system of linear equations, Aox = by, represents N intersecting hyperplanes, whose
intersection is the solution to the system of equations. The solution is often obtained iteratively by
minimising an appropriate quadratic form using well known optimisation techniques. These methods
do not consider the geometrical nature of the intersecting hyperplanes explicitly. Investigation of the
underlying geometry reveals some interesting properties and observations, which can be useful in
developing a different iterative approach. This paper investigates some geometrical ideas which
include (1) flatness, a newly defined parameter which characterises the local geometry, (2) flatness
values along random directions and along eigenvectors for the largest and smallest eigenvalues, (3)
the change in flatness values during steepest descent approach, (4) calculation of straight lines
which pass in close vicinity of the solution, and (5) the effect of adding a new consistent equation to
the system of equations, on the eigenvectors for the largest and smallest eigenvalues.

1. Background

Solving a system of linear algebraic equations is a classical problem which has many practical
applications in areas such as engineering and science. The NxN system of linear equations can be
written in a matrix form as Aex = bo, where Ag is a NxN matrix, bo is an N-vector, and x is the solution
vector to be determined. Each row of Ag is assumed to be normalized. Each row of Ag represents a
hyperplane passing through the solution s, and the system of equations represents N intersecting
hyperplanes. There are many direct methods such as gaussian elimination and others which give an
exact solution. However, it is often sufficient to get an approximate solution in practical applications.
Iterative methods essentially start with a guess solution and improve it iteratively to get closer to the
solution within acceptable accuracy. A quick summary of these direct as well as iterative methods
can be found in standard books on linear algebra [for example, J. E. Gentle, 2007]. Iterative methods
such as the steepest descent method and the conjugate gradient method are used when the matrix
is symmetric and positive definite. (It is well known that Aex = be can be put in the form Ax = b where
A = Ag'Ag and b = Ag"be. This gives a symmetric positive definite matrix A for any Ao.) These are based
on minimizing an appropriately defined quadratic function, using optimization techniques. Details of
these methods, including convergence analysis, are available in standard books and reports [for
example, J. R. Shewchuk, 1994]. Variations of the steepest descent method are available which use
the momentum concept to achieve faster convergence [Y. Nesterov, 1983; I. Sutskever et. Al., 2013].
None of these methods consider geometrical aspects of the intersecting hyperplanes explicitly.
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It is well known that the steepest descent method leads to a fast approach to the solution (i.e., gives
rapid reduction in residuals, or distance from solution) in the first few steps and slows down
substantially in the following steps. There are two possible ways of bypassing this slow down
[Patwardhan, 2022] and making the steepest descent method much faster, which include random
movement of the point between iterations, and possible matrix transformations between iterations.
It was shown that these approaches can increase the speed of convergence of the steepest descent
method by several orders of magnitude.

In this paper, some interesting geometrical properties of the intersecting hyperplanes are
investigated, which can be useful in developing fast algorithms based on the steepest descent
method alone.

2. Geometrical properties of the intersecting hyperplanes

A hyperplane in N dimensions divides the N-dimensional space into two half spaces. If we consider
all the N hyperplanes defined by the rows of the Ag matrix, they divide the N-dimensional space into
2N parts, each of which can be termed as a hyper-orthant (referred to just as an orthant in this paper
for convenience). Each orthant is a cone with its apex at the solution point s which satisfies Ags = bo.
In general, some orthants are sharp and pointed, while others are wider and somewhat flat. Let us
consider a point P which is at a distance dsoin from the solution, and the corresponding vector p
which is a vector of the coordinates of P. The closeness of P to the N hyperplanes defined by Aox =
bo, can be expressed in terms of Oreso (i.€., the root mean square of the residuals for the point P,
defined as ro = bo — Aop). The residuals ro represent actual distances of P from the N hyperplanes
since the rows of Ag are assumed to be normalized. It is obvious that if we move away from the
solution along direction SP, then both dsin and ores,0 increase linearly, but their ratio remains
unchanged. We define a “flatness index” for the point P as ¢o = Ores,0 /dsoin Which is constant along
the line SP. A low value of ¢, implies that all hyperplanes are close to P in general, and a high value
of ¢o implies that all hyperplanes are far away from P in general. Let us consider two limiting cases. If
all the hyperplanes are very close to P, then ores,0 can be very low, giving ¢o = 0. On the other hand, if
all the hyperplanes are almost orthogonal to the line SP, then the absolute value of every residual
would be close to dson. In the extreme case, every residual would be equal to dsoin, giVINg Gres,0 = dsoln,
and ¢o = 1. Therefore, ¢ satisfies 0 < ¢o < 1. These are extreme values covering all instances of
matrices in the N-dimensional space. For a given matrix, the range of ¢ values would be a subset of
this range.

We can define a similar flatness index ¢ = Oges /dsoin for the matrix A where oges is the root mean
square of the residuals for the point P, defined as r = b — Ap. It is easy to show that r = Ag'ro. The
lower limit for ¢ is therefore 0. However, rows of A are not in a normalized form, and r does not
represent the actual distance from rows of A. Therefore, the upper limit on ¢ is not equal to 1.

It is interesting to see the range covered by ¢ values for a given matrix. Let S be the solution point,
which gives As = b. Let v be a unit vector in the SP direction, so we can write p = s + dsonv. The
residuals at P are given by r = b — Ap = - dsoinAv. The sum of squares of residuals at P can be written
as SSres = r'r = (dsoin)?>(Av)"Av. Let (v;, i = 1 to N) be the unit length eigenvectors of matrix A, and (A, i =
1 to N) be the corresponding eigenvalues. Since A is symmetric and positive definite, all the A;, values
are positive, and all the eigenvectors v; are mutually orthogonal. The vector v therefore can be
written as



N
V= Z o4 V; (1)

where a; is the length of the component of v in the v; direction. Since all the v’s are unit vectors, we
have ¥;a;2 = 1. Av can now be written as
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Av = Z (XiAVi = Z (Xi)\iVi (2)

i=1 i=1

As mentioned above, SSges can be written as

N
SShes = Ao (AV). (AV) = 21, Y o2 )
i=1
and the flatness index ¢ can be written as
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The maximum value of the summation in equation (4) is Amax’, since all a; values are positive, and
add up to 1. Therefore

(pmax = AI’I’IHX/I\IO.5 (5)

This ¢ value corresponds to the case where v coincides with the eigenvector corresponding to the
largest eigenvalue Amax. Using a similar argument, we get

QPmin = Amin/NO'5 (6)

This is the ¢ value for the case where v coincides with the eigenvector corresponding to the smallest
eigenvalue Amin. The ratio ®dmax/dmin is equal to the condition number of A.

3. lllustrative example in two dimensions

Let us illustrate the ideas presented above with an example in two dimensions. Let us consider the

0.832 0.555 _0.708 0.585
0.124 0.992] and A= [0.585 1.292] -Letho
and b be equal to zero, so that the solution s is at the origin. Calculations give Amax= 1.654, Amin =

0.346, ¢max = 1.169, and d)min = 0.245.

matrix ﬁ é] , Which, after normalization, gives Aq = [



Figure 1 below shows the calculated results graphically. The blue ellipse shows the contour for one
specific value of SSges . The two grey lines, i.e., lines Al and A2, show the equations corresponding to
the two rows of A. The dashed and dotted orange lines show eigenvector directions corresponding
to the maximum and minimum eigenvalues respectively, and are seen to be orthogonal, as
expected. They also coincide with the axes of the contour ellipse. The range of ¢ values for this
matrix is [0.245, 1.169]. The dashed-dotted black lines are just randomly selected directions for
illustration. The lines A1 and A2 divide the area into four parts. Line 1 lies in the narrow orthant
between lines Al and A2. It has a flatness index value of ¢ = 0.28. Line 2, on the other hand, lies in
the wider orthant defined by lines A1 and A2, and has a higher flatness index value of ¢ = 1.10.
These ¢ values lie within the calculated range of ¢ values, i.e., 0.245 < ¢ < 1.169. The lower flatness
index of 0.28 for Line 1 corresponds to a sharper orthant. The highest ¢ value occurs along the
eigenvector corresponding to the highest eigenvalue, and the lowest ¢ value occurs along the
eigenvector corresponding to the lowest eigenvalue. It may be noted that the direction along which
$ = dmax corresponds to the shortest axis of the ellipse and is the direction along which SSges
increases most rapidly.

4. Steepest descent method and the variation of ¢

The steepest descent method reduces SSges at each step. It has been shown earlier [Patwardhan,
2022] that the reduction is large in the initial few steps, and then it tapers off drastically. It is
interesting to see how ¢ changes as the steepest descent method progresses. For this purpose,
random problems of various sizes were generated. The generation of such problems has been
described earlier in detail, and involves generation of A, bo, s, and a starting point Xo [Patwardhan,
2022]. Details of the steepest descent method are not repeated here, since they are very well known
[for example, J. R. Shewchuk, 1994]. After generating the problem, steepest descent steps are taken
starting at Xo and the flatness index ¢ is calculated at each step.

Figure 2 shows the variation of ¢ at successive steps, for N = 10, for ten different starting points Xo.
The largest and smallest eigenvalues, Amax and Amin, Were calculated using power iteration with A and
A (i.e., the inverse of A). The A matrix had dmax = 1.093 and dmin = 2.82 x 107, Figure 2 shows that
the ¢ values at the beginning (i.e., at different starting points Xq) were between 0.3 and 0.85, and
they all reduced to less than 0.05 in ten steps. The flatness index ¢ reduced rapidly in the first one or
two steps, and then it reduced further only slowly. This is similar to the behaviour of SSges found
earlier.

Figure 3 shows the variation of ¢ at successive steps, for N = 1000, for ten different starting points
Xo. The A matrix had ®max = 0.128 and ¢pmin = 3.61 x 108, Figure 3 shows that the ¢ values at the
beginning (i.e., at different starting points) were between 0.04 and 0.045, and they all reduced to
less than 0.002 in ten steps. The flatness index ¢ reduced rapidly in the first one or two steps, and
then it reduced further slowly. This is similar to the behaviour of SS,.s found earlier. The calculated
results for N = 10 and 1000 show that the ¢ values are lower, and the variation in the graphs for
different xo vectors is much smaller for the larger value of N = 1000.
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Figure 1. Results obtained for the illustrative example, with values of flatness index
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Figure 2. Variation of ¢ with steepest descent method for ten different starting points, for N =10
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Figure 3. Variation of ¢ with SD steps for ten different starting points, for N = 1000

Figures 2 and 3 show that each steepest descent step gives a reduction not only in SSes , but in the
flatness index ¢ as well. The numerical results which go into Figures 2 and 3 clearly indicate this
although they are not presented here, for the sake of brevity. This implies that steepest descent
steps may ultimately give ¢ = pmin, though it may take a very large number of steps. Thus, steepest
descent method would eventually approach the eigenvector corresponding to the smallest
eigenvalue and would reach the orthant containing the corresponding eigenvector. Of course, it may
not approach it directly, but may follow a tortuous path around this orthant. The details are not
shown since they are not relevant here.

5. Lines passing through the solution point

Let us consider a two-dimensional problem for the sake of simplicity. Figure 4 shows the example
considered earlier, with some additions. Lines Al and A2, and the orange lines are the same as in
Figure 1. Figure 4 shows an arbitrary line L1 which, along with lines Al and A2, defines a triangle,
which is merely a simplex in two dimensions. The incircle of this simplex is shown as a circle with its
center at C1. Line L2 has been drawn such that it is parallel to line L1 and is farther way from the
origin. Lines L2, Al, and A2 define another simplex, and its incircle is the circle shown with center at
C2. It is trivial to show, using simple geometry, that line C1-C2 passes through the solution (the
origin, in this case) which is the intersection of lines A1 and A2.

The observations made with Figure 4 can be generalized to N dimensions. It has been mentioned
earlier that the N hyperplanes defined by the rows of the Ag matrix in the system of equations Agx =
bo (or the A matrix in Ax = b) pass through the solution point s and make 2" orthants. If we take any
single orthant out of these, and generate two simplexes with two parallel hyperplanes placed at
different distances from the solution, then the line joining their in-centers would pass through s. This
will happen not only with the in-centers, but with any other uniquely defined centers of these



simplexes. Many such centers have been used earlier, such as center of mass, the centroid, the
center of the smallest sphere which includes the simplex, the analytical center, the weighted
projection center, the Bl center, and the harmonic center [Moretti, 2003; Patwardhan, 2020]. The
calculation of these centers, however, involves different degrees of computational effort. For
example, the exact calculation of the in-center of a simplex requires O(N ) computations. Since
calculation of the solution of Ax = b with direct methods also involves O(N 3) computations,
calculating two in-centers and joining them to get the solution, gives no computational advantage.
However, even if the two centers are calculated only approximately, they would give a line which
passes in close vicinity of the solution. Such a line can be useful in developing a new iterative
procedure for solving Ax = b. Calculation of such a line using the steepest descent method is
described below.

Corresponding points in a given orthant

Line A2

EVmax

EVmin

A2
Al

Line L2

-4 Line L1

Figure 4. A line connecting centers of two distinct in-circles in an orthant

6. Approximate calculation of a line passing close to the solution point using steepest descent

The idea stated above can be extended further. To get a line passing close to the solution, it is not
essential to construct two simplexes and calculate their approximate centers. It would be enough to
get two “corresponding points” at different distances from the center (even if they lie in different



orthants). It has been mentioned earlier that steepest descent method gives a continuous reduction
in SSgres as well as the flatness index ¢. The following algorithm uses the steepest descent method,
starting from two different points, to get two approximate “corresponding points” which give a line
passing in close vicinity of the solution.

Let P1 be a point selected at random. Let Q1 be the point obtained by applying a given number of
steepest descent steps to P1. Let P2 be a point taken in a random direction from Q1 at a selected
distance. Let Q2 be the point obtained by applying the same number of steepest descent steps to
P2. It is interesting to see if the line Q2-Q1 drawn from Q2 passes through the vicinity of the
solution. The detailed algorithm is given below:

Algorithm 1:  Given: N, Ao, bo, and s

1 Make A (= Ao"Ao) and b (= A¢"bo)

2 Get a random vector v; with elements N(0,1)

3 Normalize vy

4 Set P1 = the point whose coordinates are given by the elements of v,
5 Get Q1 by applying 20 steepest descent steps to P1, using A and b
6 d = distance P1-Q1

7 Get another random vector v, with elements N(0,1)

8 Normalize v,

9 SetP2=Q1+10dv;

10 Get Q2 by applying 20 steepest descent steps to P2, using A and b
11 Get 0, the acute angle between lines Q2-Q1 and Q2-S

The steps 2-4 ensure that P1 is not too close to the solution. This is so, because the randomly
generated v; would be nearly orthogonal to the line P1-S for large N. Thus, P1 would be at least unit
distance from the solution.

The results obtained with Algorithm 1 are shown in Figure 5. This figure shows results obtained for N
=10 to 1000, and each point is an average of ten starting points P1. Figure 5 shows that 0,, the acute
angle between lines Q2-Q1 and Q2-S is just a few degrees. So, direction Q2-Q1 can be used as a good
approximation for the direction Q2-S. It was also observed in all these cases that the angle between
the line Q2-Q1 and the eigenvector corresponding to the largest eigenvalue was greater than 89
degrees, which implies that these two directions are almost orthogonal.

It is interesting to see the angles made by the line Q2-Q1 with the hyperplanes corresponding to the
N linear equations. Let Bag;and B, be the acute angles made by the line Q2-Q1 with the i*" row of Ao
and A respectively. The angles of course, are different for different rows. The range covered by these
values over i = (1, N) is shown in Table 1 below. The table also shows similar angles made by a
randomly selected direction (with N(0,1) elements) with rows of matrices Ag and A. It is well known
that any two randomly generated directions in N dimensions are almost orthogonal for large N.
However, we can make some interesting observations from Table 1: (1) the range covered by the
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Figure 5. The acute angle between lines Q2-Q1 and Q2-S (N = 10 and 1000)

N 10 1000
Direction Q2-Q1 giargi%rr)) Q2-Q1 5;2{172;
B0, min 85.3 59.9 89.0 83.5
Bno,ave 87.9 74.5 89.8 88.6
B0, max 89.7 86.5 90.0 90.0
Ba,min 88.4 65.4 89.7 83.8
Baavg 89.4 77.8 89.9 88.5
Ba,max 89.9 89.1 90.0 90.0

Table 1. Angles (degrees) made by Q2-Q1 direction and random directions with A and A rows

angles between a randomly generated direction and the N hyperplanes of Ap is 59.9-86.5 degrees,
while that for A is 65.4-89.1 degrees for N=10. The higher values for A indicate that the hyperplanes
of A rows have a sharper configuration than those of Ao. A similar observation holds for N = 1000 as
well. (2) The angles for N = 1000 are higher than those for N = 10. (3) The angles made by the Q2-Q1
direction are much larger than those made by a random direction for N = 10. This indicates the
favourable effect of the steepest descent method in aligning the Q2 and Q1 points so that the Q2-Q1
line makes larger angles with the A as well as Ap rows. This observation also holds true for N = 1000.
The good alignment of Q2 and Q1 is also obvious from Figure 5, which shows that the acute angle
between lines Q2-Q1 and Q2-S is just a few degrees.



7. Effect of adding a new, consistent equation to the Agx = by system, on eigenvalues and
eigenvectors of A

If a new equation is added to the system of N x N equations (i.e., Aex = by), the system size becomes
(N+1)xN. Let the new equation be v'x = w. Let us assume that v is normalized, and that the solution s
satisfies this equation, so that the (N+1)xN system is consistent and has the same unique solution s.
We can make a new NxN system A;x = b; (where A, is symmetric and positive definite) having the
same solution s by defining

A= (AoTAo + VVT), and b1 = AoTbo + wv (7)

This new A; matrix will have eigenvalues and eigenvectors which will, in general, be different from
those of A. We can extend this procedure by adding the equation v'x = w not once, but k times to
the original system of equations (resulting in a (N+k)xN system), to get Awx = by where

Ax = (AoTAo + kVVT) and b = AoTbo + kwv (8)

It is interesting to see what happens to eigenvalues and eigenvectors as k increases. The eigenvalues
of A are defined by the usual equation Axx = Ax. Substituting for Ax from equation (8), and using the
condition k >> 1, it is trivial to show that the equation Axx = Ax Is satisfied by A = k and x = v. In other
words, any arbitrary unit vector v can be used to transform the system Aox = bo to another system
Aix = by using equation (8) and a large enough k, such that (i) v is the eigenvector of Ag
corresponding to the largest eigenvalue (which is equal to k, for large k), and (ii) both the systems
have the same solution s. From a geometrical viewpoint, the SS;.s contours change orientation as k
increases, while the solution s remains unchanged.

Let us now see the effect of k on the eigenvalues and eigenvectors of Ax. Computations were carried
out for N =10 and for N = 1000 by generating random problems as described before. The largest and
smallest eigenvalues, Amax and Amin, were calculated using power iteration with Ax and Ag;iny (i.€., the
inverse of A). The corresponding eigenvectors, emax and emin, were also calculated. The direction Q2-
Q1 was calculated as described above and was used as v. Computations were carried out for various
values of k, to calculate Amaxk , Amink , €maxk and emink . Table 2 shows the acute angles O (degrees)
between different vectors based on these calculations.

Variation in Amax : It is seen from Table 2 that the maximum eigenvalue, Amax , starts with 3.45 for the
A matrix, and is almost equal to k for k >= 4 or so for N = 10. A similar observation can be made for N
= 1000 as well.

Variation in emaxk : For k =0, the eigenvector corresponding to the largest eigenvalue, emaxk , is
almost orthogonal to v. However, it changes direction as k increases, and for k = 8, it almost
coincides with v. This is consistent with the analysis given above. O(€maxk,emax) goes from 0 to almost
90, indicating that emax rotates almost through 90 degrees as k increases. Similar observations can
be made for N = 1000 as well.

Variation in emin : It is seen from Table 2 that for N = 10, eminx Was at 29 degrees with v for k =0, and
became almost orthogonal to v for large k. It also shows that emin rotated through 62 degrees or so
as k changed from 0 to 8. Similar observations can be made for N = 1000 as well.
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(C] (C] (C] (O]
N k Aax (emaxk,V) | (€maxk,€max) | (€mink.V) | (€mink €min)

0 3.45 89.3 0.0 29.0 0.0

1 3.46 89.1 0.0 88.7 61.4

2 3.46 88.4 0.9 89.4 62.1

3 3.46 85.7 3.7 89.6 62.3

10 4 4.02 3.3 86.1 89.7 62.4
5 5.02 1.3 88.1 89.7 62.5

6 6.02 0.9 88.5 89.8 62.5

7 7.02 0.0 88.7 89.8 62.5

8 8.02 0.0 88.8 89.8 62.6

0 4.05 89.4 0.0 80.3 0.0

1 4.05 89.2 0.0 90.0 72.3

2 4.05 88.8 0.0 90.0 72.3

3 4.05 87.7 1.8 90.0 72.3

1000 4 4.08 58.6 31.3 90.0 72.3
5 5.03 2.3 87.3 90.0 72.3

6 6.03 1.2 88.3 90.0 72.3

7 7.03 0.9 88.7 90.0 72.3

8 8.03 0.0 88.9 90.0 72.3

Table 2. Variation of Amax and eigenvector directions with k, for N = 10 and 1000 (6 in degrees)

Table 2 also shows that the vector, emaxx changes very rapidly in the range k = 3 to 5, and changes
very slowly outside this range, for N = 10 as well as N = 1000. On the other hand, the vector, eminx

changes rapidly at much lower values of k, and reaches the asymptotic value at k = 2 itself, both for

N =10 and N = 1000. Figures 6, 7 and 8 show the variation of these quantities graphically.
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Figure 6. Variation of Amax with k for N = 10 and 1000

11



100

O(emaxk, V) —

O(emax,k, €max)

0, degrees

Figure 7. Variation of ©(emaxk ,V) and O(emaxk,emax) for N =10

100
90

80
70
60
50
40

O(Emax,k, V) /

O(Emax,k, €max)

0, degrees

30
20
10

Figure 8. Variation of ©(emaxk ,v) and O(€maxk,emax) for N = 1000

8. The rotation of eigenvectors with increasing k

The rotation of eigenvectors in N dimensions is difficult to visualize. However, rotations can be
visualized conveniently in two dimensions. Figure 9 shows graphically how eigenvector directions

change due to repeated addition of a row to the matrix Ao. The values used are: Ag = i 140] ,andv

= [—18] . The figure shows a blue ellipse and lines for the A matrix. The red and green ellipses and

lines correspond to k = 2 and 4 respectively. The v direction is shown in black. As k increases, the
dashed lines (which are eigenvectors corresponding to the largest eigenvalue) approach the line v.
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The dotted lines, which are eigenvectors corresponding to the smallest eigenvalue, are orthogonal
to the dashed lines, as expected. (The three ellipses correspond to different values of SSges Which
were selected for getting ellipses of suitable sizes for visualization, and their axes are the
eigenvector directions. A change in the SSges value does not change the orientation of the contour
ellipses.)

Figure 9. Variation of ssges contours and eigenvector directions with k, for N = 2

9. Conclusions

The system of linear equations, Aox = by, represents N intersecting hyperplanes. Some geometrical
properties of such a system (assuming the rows of Ag are normalized) have been investigated in this
paper. The conclusions are listed below.

1. A new parameter, termed here as flatness index ¢o, has been defined, which characterises the
local geometry of the intersecting hyperplanes of Ag at any point. It has been shown to satisfy the
inequality 0 < ¢po < 1. For the derived matrix A (= Ao'Ao), the flatness index ¢ satisfies 0 < ¢, but the
upper limit may be greater than 1. This is so because the residuals ro (= bo- AoX) represent actual
distances, while the residuals r (= b- Ax) do not.
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2. Equations (5) and (6) relate the extreme values of ¢ to maximum and minimum eigenvalues.

3. The flatness index ¢ reduces rapidly in the first one or two steps of SD, and then reduces further
slowly. Using this property, lines passing through the neighbourhood of the solution can be
obtained, which can be useful in iterative calculations. These lines also happen to be almost
orthogonal to the eigenvector of A corresponding to the largest eigenvalue.

4. It has been shown that if a normalized equation v'x = w, (which passes through the solution of Agx
= by, i.e., satisfies v's = w) is repeatedly added k times to the original system of equations, then it
becomes an eigenvector direction of Ay, corresponding to the largest eigenvalue Amax of Ax for k> 5
or so. Moreover, Amax = k for k > 5 or so. The eigenvector direction of Ay, corresponding to the
smallest eigenvalue Amin Of Ak also changes significantly with k.
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