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Abstract 

The NxN system of linear equations, A0x = b0, represents N intersecting hyperplanes, whose 

intersection is the solution to the system of equations. The solution is often obtained iteratively by 

minimising an appropriate quadratic form using well known optimisation techniques. These methods 

do not consider the geometrical nature of the intersecting hyperplanes explicitly. Investigation of the 

underlying geometry reveals some interesting properties and observations, which can be useful in 

developing a different iterative approach. This paper investigates some geometrical ideas which 

include (1) flatness, a newly defined parameter which characterises the local geometry, (2) flatness 

values along random directions and along eigenvectors for the largest and smallest eigenvalues, (3) 

the change in flatness values during steepest descent approach, (4) calculation of straight lines 

which pass in close vicinity of the solution, and (5) the effect of adding a new consistent equation to 

the system of equations, on the eigenvectors for the largest and smallest eigenvalues. 

1. Background 

Solving a system of linear algebraic equations is a classical problem which has many practical 

applications in areas such as engineering and science. The NxN system of linear equations can be 

written in a matrix form as A0x = b0, where A0 is a NxN matrix, b0 is an N-vector, and x is the solution 

vector to be determined. Each row of A0 is assumed to be normalized. Each row of A0 represents a 

hyperplane passing through the solution s, and the system of equations represents N intersecting 

hyperplanes. There are many direct methods such as gaussian elimination and others which give an 

exact solution. However, it is often sufficient to get an approximate solution in practical applications. 

Iterative methods essentially start with a guess solution and improve it iteratively to get closer to the 

solution within acceptable accuracy. A quick summary of these direct as well as iterative methods 

can be found in standard books on linear algebra [for example, J. E. Gentle, 2007]. Iterative methods 

such as the steepest descent method and the conjugate gradient method are used when the matrix 

is symmetric and positive definite. (It is well known that A0x = b0 can be put in the form Ax = b where 

A = A0
TA0 and b = A0

Tb0. This gives a symmetric positive definite matrix A for any A0.) These are based 

on minimizing an appropriately defined quadratic function, using optimization techniques. Details of 

these methods, including convergence analysis, are available in standard books and reports [for 

example, J. R. Shewchuk, 1994]. Variations of the steepest descent method are available which use 

the momentum concept to achieve faster convergence [Y. Nesterov, 1983; I. Sutskever et. Al., 2013]. 

None of these methods consider geometrical aspects of the intersecting hyperplanes explicitly. 
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It is well known that the steepest descent method leads to a fast approach to the solution (i.e., gives 

rapid reduction in residuals, or distance from solution) in the first few steps and slows down 

substantially in the following steps. There are two possible ways of bypassing this slow down 

[Patwardhan, 2022] and making the steepest descent method much faster, which include random 

movement of the point between iterations, and possible matrix transformations between iterations. 

It was shown that these approaches can increase the speed of convergence of the steepest descent 

method by several orders of magnitude.  

In this paper, some interesting geometrical properties of the intersecting hyperplanes are 

investigated, which can be useful in developing fast algorithms based on the steepest descent 

method alone. 

2. Geometrical properties of the intersecting hyperplanes 

A hyperplane in N dimensions divides the N-dimensional space into two half spaces. If we consider 

all the N hyperplanes defined by the rows of the A0 matrix, they divide the N-dimensional space into 

2N parts, each of which can be termed as a hyper-orthant (referred to just as an orthant in this paper 

for convenience). Each orthant is a cone with its apex at the solution point s which satisfies A0s = b0. 

In general, some orthants are sharp and pointed, while others are wider and somewhat flat. Let us 

consider a point P which is at a distance dsoln from the solution, and the corresponding vector p 

which is a vector of the coordinates of P. The closeness of P to the N hyperplanes defined by A0x = 

b0, can be expressed in terms of σRes,0 (i.e., the root mean square of the residuals for the point P, 

defined as r0 = b0 – A0p). The residuals r0 represent actual distances of P from the N hyperplanes 

since the rows of A0 are assumed to be normalized. It is obvious that if we move away from the 

solution along direction SP, then both dsoln and σRes,0 increase linearly, but their ratio remains 

unchanged. We define a “flatness index” for the point P as φ0 = σRes,0 /dsoln which is constant along 

the line SP. A low value of φ0 implies that all hyperplanes are close to P in general, and a high value 

of φ0 implies that all hyperplanes are far away from P in general. Let us consider two limiting cases. If 

all the hyperplanes are very close to P, then σRes,0 can be very low, giving φ0 = 0. On the other hand, if 

all the hyperplanes are almost orthogonal to the line SP, then the absolute value of every residual 

would be close to dsoln. In the extreme case, every residual would be equal to dsoln, giving σRes,0 = dsoln, 

and φ0 = 1. Therefore, φ0 satisfies 0 ≤ φ0 ≤ 1. These are extreme values covering all instances of 

matrices in the N-dimensional space. For a given matrix, the range of φ0 values would be a subset of 

this range. 

We can define a similar flatness index φ = σRes /dsoln for the matrix A where σRes is the root mean 

square of the residuals for the point P, defined as r = b – Ap. It is easy to show that r = A0
Tr0. The 

lower limit for φ is therefore 0. However, rows of A are not in a normalized form, and r does not 

represent the actual distance from rows of A. Therefore, the upper limit on φ is not equal to 1. 

It is interesting to see the range covered by φ values for a given matrix. Let S be the solution point, 

which gives As = b. Let v be a unit vector in the SP direction, so we can write p = s + dsolnv. The 

residuals at P are given by r = b – Ap = - dsolnAv. The sum of squares of residuals at P can be written 

as SSres = rTr = (dsoln)2(Av)TAv. Let (vi, i = 1 to N) be the unit length eigenvectors of matrix A, and (λi, i = 

1 to N) be the corresponding eigenvalues. Since A is symmetric and positive definite, all the λi, values 

are positive, and all the eigenvectors vi are mutually orthogonal. The vector v therefore can be 

written as  
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𝐯 =  ∑ αi𝐯i

N

i=1

        (1) 

 

where αi is the length of the component of v in the vi direction. Since all the v’s are unit vectors, we 

have  ∑ αi
2

i  = 1. Av can now be written as  

 
𝐀𝐯 =  ∑ αi𝐀𝐯i

N

i=1

=  ∑ αiλi𝐯i

N

i=1

  (2) 

 

As mentioned above, SSRes can be written as  

 
SSRes =  dsoln

2 (𝐀𝐯). (𝐀𝐯) =  dsoln
2 ∑ αi

2

N

i=1

λi
2        (3) 

 

and the flatness index φ can be written as 

 

φ =  [(
1

N
) ∑ αi

2

N

i=1

λi
2]

0.5

      (4) 

 

The maximum value of the summation in equation (4) is λmax
2, since all αi

2 values are positive, and 

add up to 1. Therefore 

 
φmax =  λmax N0.5⁄        (5) 

 

This φ value corresponds to the case where v coincides with the eigenvector corresponding to the 

largest eigenvalue λmax. Using a similar argument, we get 

 
φmin =  λmin N0.5⁄        (6) 

 

This is the φ value for the case where v coincides with the eigenvector corresponding to the smallest 

eigenvalue λmin. The ratio φmax/φmin is equal to the condition number of A.  

3. Illustrative example in two dimensions 

Let us illustrate the ideas presented above with an example in two dimensions. Let us consider the 

matrix  [3 2
1 8

] , which, after normalization, gives A0 = [0.832 0.555
0.124 0.992

] and A = [0.708 0.585
0.585 1.292

] . Let b0 

and b be equal to zero, so that the solution s is at the origin. Calculations give λmax = 1.654, λmin = 

0.346, φmax = 1.169, and φmin = 0.245.  
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Figure 1 below shows the calculated results graphically. The blue ellipse shows the contour for one 

specific value of SSRes . The two grey lines, i.e., lines A1 and A2, show the equations corresponding to 

the two rows of A. The dashed and dotted orange lines show eigenvector directions corresponding 

to the maximum and minimum eigenvalues respectively, and are seen to be orthogonal, as 

expected. They also coincide with the axes of the contour ellipse. The range of φ values for this 

matrix is [0.245, 1.169]. The dashed-dotted black lines are just randomly selected directions for 

illustration. The lines A1 and A2 divide the area into four parts. Line 1 lies in the narrow orthant 

between lines A1 and A2. It has a flatness index value of φ = 0.28. Line 2, on the other hand, lies in 

the wider orthant defined by lines A1 and A2, and has a higher flatness index value of φ = 1.10. 

These φ values lie within the calculated range of φ values, i.e., 0.245 ≤ φ ≤ 1.169. The lower flatness 

index of 0.28 for Line 1 corresponds to a sharper orthant. The highest φ value occurs along the 

eigenvector corresponding to the highest eigenvalue, and the lowest φ value occurs along the 

eigenvector corresponding to the lowest eigenvalue. It may be noted that the direction along which 

φ = φmax corresponds to the shortest axis of the ellipse and is the direction along which SSRes 

increases most rapidly. 

4. Steepest descent method and the variation of φ 

The steepest descent method reduces SSRes at each step. It has been shown earlier [Patwardhan, 

2022] that the reduction is large in the initial few steps, and then it tapers off drastically. It is 

interesting to see how φ changes as the steepest descent method progresses. For this purpose, 

random problems of various sizes were generated. The generation of such problems has been 

described earlier in detail, and involves generation of A0, b0, s, and a starting point x0 [Patwardhan, 

2022]. Details of the steepest descent method are not repeated here, since they are very well known 

[for example, J. R. Shewchuk, 1994]. After generating the problem, steepest descent steps are taken 

starting at x0 and the flatness index φ is calculated at each step.  

Figure 2 shows the variation of φ at successive steps, for N = 10, for ten different starting points x0. 

The largest and smallest eigenvalues, λmax and λmin, were calculated using power iteration with A and 

Ainv (i.e., the inverse of A). The A matrix had  φmax = 1.093 and φmin = 2.82 x 10-5. Figure 2 shows that 

the φ values at the beginning (i.e., at different starting points x0) were between 0.3 and 0.85, and 

they all reduced to less than 0.05 in ten steps. The flatness index φ reduced rapidly in the first one or 

two steps, and then it reduced further only slowly. This is similar to the behaviour of SSRes found 

earlier. 

Figure 3 shows the variation of φ at successive steps, for N = 1000, for ten different starting points 

x0. The A matrix had  φmax = 0.128 and φmin = 3.61 x 10-8. Figure 3 shows that the φ values at the 

beginning (i.e., at different starting points) were between 0.04 and 0.045, and they all reduced to 

less than 0.002 in ten steps. The flatness index φ reduced rapidly in the first one or two steps, and 

then it reduced further slowly. This is similar to the behaviour of SSres found earlier. The calculated 

results for N = 10 and 1000 show that the φ values are lower, and the variation in the graphs for 

different x0 vectors is much smaller for the larger value of N = 1000. 
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 Figure 1. Results obtained for the illustrative example, with values of flatness index 

 

  

 Figure 2. Variation of φ with steepest descent method for ten different starting points, for N = 10 



6 
 

 

  

 Figure 3. Variation of φ with SD steps for ten different starting points, for N = 1000 

 

Figures 2 and 3 show that each steepest descent step gives a reduction not only in SSres , but in the 

flatness index φ as well. The numerical results which go into Figures 2 and 3 clearly indicate this 

although they are not presented here, for the sake of brevity. This implies that steepest descent 

steps may ultimately give φ = φmin, though it may take a very large number of steps. Thus, steepest 

descent method would eventually approach the eigenvector corresponding to the smallest 

eigenvalue and would reach the orthant containing the corresponding eigenvector. Of course, it may 

not approach it directly, but may follow a tortuous path around this orthant. The details are not 

shown since they are not relevant here. 

5. Lines passing through the solution point 

Let us consider a two-dimensional problem for the sake of simplicity. Figure 4 shows the example 

considered earlier, with some additions. Lines A1 and A2, and the orange lines are the same as in 

Figure 1. Figure 4 shows an arbitrary line L1 which, along with lines A1 and A2, defines a triangle, 

which is merely a simplex in two dimensions. The incircle of this simplex is shown as a circle with its 

center at C1. Line L2 has been drawn such that it is parallel to line L1 and is farther way from the 

origin. Lines L2, A1, and A2 define another simplex, and its incircle is the circle shown with center at 

C2. It is trivial to show, using simple geometry, that line C1-C2 passes through the solution (the 

origin, in this case) which is the intersection of lines A1 and A2. 

The observations made with Figure 4 can be generalized to N dimensions. It has been mentioned 

earlier that the N hyperplanes defined by the rows of the A0 matrix in the system of equations A0x = 

b0 (or the A matrix in Ax = b) pass through the solution point s and make 2N orthants. If we take any 

single orthant out of these, and generate two simplexes with two parallel hyperplanes placed at 

different distances from the solution, then the line joining their in-centers would pass through s. This 

will happen not only with the in-centers, but with any other uniquely defined centers of these 
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simplexes. Many such centers have been used earlier, such as center of mass, the centroid, the 

center of the smallest sphere which includes the simplex, the analytical center, the weighted 

projection center, the BI center, and the harmonic center [Moretti, 2003; Patwardhan, 2020]. The 

calculation of these centers, however, involves different degrees of computational effort. For 

example, the exact calculation of the in-center of a simplex requires O(N 3) computations. Since 

calculation of the solution of Ax = b with direct methods also involves O(N 3) computations, 

calculating two in-centers and joining them to get the solution, gives no computational advantage. 

However, even if the two centers are calculated only approximately, they would give a line which 

passes in close vicinity of the solution. Such a line can be useful in developing a new iterative 

procedure for solving Ax = b. Calculation of such a line using the steepest descent method is 

described below. 

 

   

Figure 4. A line connecting centers of two distinct in-circles in an orthant 

 

6. Approximate calculation of a line passing close to the solution point using steepest descent 

The idea stated above can be extended further. To get a line passing close to the solution, it is not 

essential to construct two simplexes and calculate their approximate centers. It would be enough to 

get two “corresponding points” at different distances from the center (even if they lie in different 
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orthants). It has been mentioned earlier that steepest descent method gives a continuous reduction 

in SSRes as well as the flatness index φ. The following algorithm uses the steepest descent method, 

starting from two different points, to get two approximate “corresponding points” which give a line 

passing in close vicinity of the solution. 

Let P1 be a point selected at random. Let Q1 be the point obtained by applying a given number of 

steepest descent steps to P1. Let P2 be a point taken in a random direction from Q1 at a selected 

distance. Let Q2 be the point obtained by applying the same number of steepest descent steps to 

P2. It is interesting to see if the line Q2-Q1 drawn from Q2 passes through the vicinity of the 

solution. The detailed algorithm is given below: 

______________________________________________________ 

Algorithm 1: Given:  N, A0, b0, and s  

1 Make A (= A0
TA0) and b (= A0

Tb0) 

2 Get a random vector v1 with elements N(0,1) 

3 Normalize v1 

4 Set P1 = the point whose coordinates are given by the elements of v1  

5 Get Q1 by applying 20 steepest descent steps to P1, using A and b  

6 d = distance P1-Q1 

7 Get another random vector v2 with elements N(0,1) 

8 Normalize v2 

9 Set P2 = Q1 + 10 d v2  

10 Get Q2 by applying 20 steepest descent steps to P2, using A and b 

11 Get θ1, the acute angle between lines Q2-Q1 and Q2-S 

______________________________________________________ 

The steps 2-4 ensure that P1 is not too close to the solution. This is so, because the randomly 

generated v1 would be nearly orthogonal to the line P1-S for large N. Thus, P1 would be at least unit 

distance from the solution.  

The results obtained with Algorithm 1 are shown in Figure 5. This figure shows results obtained for N 

= 10 to 1000, and each point is an average of ten starting points P1. Figure 5 shows that θ1, the acute 

angle between lines Q2-Q1 and Q2-S is just a few degrees. So, direction Q2-Q1 can be used as a good 

approximation for the direction Q2-S. It was also observed in all these cases that the angle between 

the line Q2-Q1 and the eigenvector corresponding to the largest eigenvalue was greater than 89 

degrees, which implies that these two directions are almost orthogonal. 

It is interesting to see the angles made by the line Q2-Q1 with the hyperplanes corresponding to the 

N linear equations. Let θA0,i and θA,i be the acute angles made by the line Q2-Q1 with the ith row of A0 

and A respectively. The angles of course, are different for different rows. The range covered by these 

values over i = (1, N) is shown in Table 1 below. The table also shows similar angles made by a 

randomly selected direction (with N(0,1) elements) with rows of matrices A0 and A. It is well known 

that any two randomly generated directions in N dimensions are almost orthogonal for large N. 

However, we can make some interesting observations from Table 1: (1) the range covered by the  
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 Figure 5. The acute angle between lines Q2-Q1 and Q2-S (N = 10 and 1000) 

 

N 10 1000 

Direction Q2-Q1 
Random 
direction 

Q2-Q1 
Random 
direction 

θAo,min 85.3 59.9 89.0 83.5 

θAo,avg 87.9 74.5 89.8 88.6 

θAo,max 89.7 86.5 90.0 90.0 

θA,min 88.4 65.4 89.7 83.8 

θA,avg 89.4 77.8 89.9 88.5 

θA,max 89.9 89.1 90.0 90.0 
  

Table 1. Angles (degrees) made by Q2-Q1 direction and random directions with A0 and A rows 

 

angles between a randomly generated direction and the N hyperplanes of A0 is 59.9-86.5 degrees, 

while that for A is 65.4-89.1 degrees for N=10. The higher values for A indicate that the hyperplanes 

of A rows have a sharper configuration than those of A0. A similar observation holds for N = 1000 as 

well. (2) The angles for N = 1000 are higher than those for N = 10. (3) The angles made by the Q2-Q1 

direction are much larger than those made by a random direction for N = 10. This indicates the 

favourable effect of the steepest descent method in aligning the Q2 and Q1 points so that the Q2-Q1 

line makes larger angles with the A as well as A0 rows. This observation also holds true for N = 1000. 

The good alignment of Q2 and Q1 is also obvious from Figure 5, which shows that the acute angle 

between lines Q2-Q1 and Q2-S is just a few degrees. 
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7. Effect of adding a new, consistent equation to the A0x = b0 system, on eigenvalues and 

eigenvectors of A 

If a new equation is added to the system of N x N equations (i.e., A0x = b0), the system size becomes 

(N+1)xN. Let the new equation be vTx = w. Let us assume that v is normalized, and that the solution s 

satisfies this equation, so that the (N+1)xN system is consistent and has the same unique solution s. 

We can make a new NxN system A1x = b1 (where A1 is symmetric and positive definite) having the 

same solution s by defining   

                                           A1 = (A0
TA0 + vvT), and b1 = A0

Tb0 + wv                                                     (7) 

This new A1 matrix will have eigenvalues and eigenvectors which will, in general, be different from 

those of A. We can extend this procedure by adding the equation vTx = w not once, but k times to 

the original system of equations (resulting in a (N+k)xN system), to get Akx = bk where  

                                           Ak = (A0
TA0 + kvvT) and bk = A0

Tb0 + kwv                                                (8) 

It is interesting to see what happens to eigenvalues and eigenvectors as k increases. The eigenvalues 

of Ak are defined by the usual equation Akx = λx. Substituting for Ak from equation (8), and using the 

condition k >> 1, it is trivial to show that the equation Akx = λx Is satisfied by λ = k and x = v. In other 

words, any arbitrary unit vector v can be used to transform the system A0x = b0 to another system 

Akx = bk using equation (8) and a large enough k, such that (i) v is the eigenvector of Ak 

corresponding to the largest eigenvalue (which is equal to k, for large k), and (ii) both the systems 

have the same solution s. From a geometrical viewpoint, the SSres contours change orientation as k 

increases, while the solution s remains unchanged. 

Let us now see the effect of k on the eigenvalues and eigenvectors of Ak. Computations were carried 

out for N = 10 and for N = 1000 by generating random problems as described before. The largest and 

smallest eigenvalues, λmax and λmin, were calculated using power iteration with Ak and Ak,inv (i.e., the 

inverse of Ak). The corresponding eigenvectors, emax and emin, were also calculated. The direction Q2-

Q1 was calculated as described above and was used as v. Computations were carried out for various 

values of k, to calculate λmax,k , λmin,k , emax,k and emin,k . Table 2 shows the acute angles θ (degrees) 

between different vectors based on these calculations.  

Variation in λmax : It is seen from Table 2 that the maximum eigenvalue, λmax , starts with 3.45 for the 

A matrix, and is almost equal to k for k >= 4 or so for N = 10. A similar observation can be made for N 

= 1000 as well. 

Variation in emax,k : For k = 0, the eigenvector corresponding to the largest eigenvalue, emax,k , is 

almost orthogonal to v. However, it changes direction as k increases, and for k = 8, it almost 

coincides with v. This is consistent with the analysis given above. Θ(emax,k ,emax) goes from 0 to almost 

90, indicating that emax,k rotates almost through 90 degrees as k increases. Similar observations can 

be made for N = 1000 as well. 

Variation in emin,k : It is seen from Table 2 that for N = 10, emin,k was at 29 degrees with v for k = 0, and 

became almost orthogonal to v for large k. It also shows that emin,k rotated through 62 degrees or so 

as k changed from 0 to 8. Similar observations can be made for N = 1000 as well. 
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N k λmax 
Θ 

(emax,k ,v) 
Θ 

(emax,k ,emax) 
Θ 

(emin,k .v) 
Θ 

(emin,k, emin) 

10 

0 3.45 89.3 0.0 29.0 0.0 

1 3.46 89.1 0.0 88.7 61.4 

2 3.46 88.4 0.9 89.4 62.1 

3 3.46 85.7 3.7 89.6 62.3 

4 4.02 3.3 86.1 89.7 62.4 

5 5.02 1.3 88.1 89.7 62.5 

6 6.02 0.9 88.5 89.8 62.5 

7 7.02 0.0 88.7 89.8 62.5 

8 8.02 0.0 88.8 89.8 62.6 

1000 

0 4.05 89.4 0.0 80.3 0.0 

1 4.05 89.2 0.0 90.0 72.3 

2 4.05 88.8 0.0 90.0 72.3 

3 4.05 87.7 1.8 90.0 72.3 

4 4.08 58.6 31.3 90.0 72.3 

5 5.03 2.3 87.3 90.0 72.3 

6 6.03 1.2 88.3 90.0 72.3 

7 7.03 0.9 88.7 90.0 72.3 

8 8.03 0.0 88.9 90.0 72.3 
 

 Table 2. Variation of λmax and eigenvector directions with k, for N = 10 and 1000 (θ in degrees) 

 

Table 2 also shows that the vector, emax,k changes very rapidly in the range k = 3 to 5, and changes 

very slowly outside this range, for N = 10 as well as N = 1000. On the other hand, the vector, emin,k 

changes rapidly at much lower values of k, and reaches the asymptotic value at k = 2 itself, both for 

N = 10 and N = 1000. Figures 6, 7 and 8 show the variation of these quantities graphically. 

 

    

    Figure 6. Variation of λmax with k for N = 10 and 1000 

N = 1000 

N = 10 
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    Figure 7. Variation of Θ(emax,k ,v) and Θ(emax,k ,emax) for N = 10 

 

     

    Figure 8. Variation of Θ(emax,k ,v) and Θ(emax,k ,emax) for N = 1000 

 

8. The rotation of eigenvectors with increasing k 

The rotation of eigenvectors in N dimensions is difficult to visualize. However, rotations can be 

visualized conveniently in two dimensions. Figure 9 shows graphically how eigenvector directions 

change due to repeated addition of a row to the matrix A0. The values used are: A0 =  [3 4
1 10

] , and v 

= [ 1
−.8

] . The figure shows a blue ellipse and lines for the A matrix. The red and green ellipses and 

lines correspond to k = 2 and 4 respectively. The v direction is shown in black. As k increases, the 

dashed lines (which are eigenvectors corresponding to the largest eigenvalue) approach the line v. 

Θ(emax,k, v) 

 

 

Θ(emax,k, emax) 

emax) 

 

 

Θ(emax,k, v) 

 
Θ(emax,k, emax) 
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The dotted lines, which are eigenvectors corresponding to the smallest eigenvalue, are orthogonal 

to the dashed lines, as expected. (The three ellipses correspond to different values of SSRes which 

were selected for getting ellipses of suitable sizes for visualization, and their axes are the 

eigenvector directions. A change in the SSRes value does not change the orientation of the contour 

ellipses.) 

 

  

    Figure 9. Variation of ssRes contours and eigenvector directions with k, for N = 2 

 

9. Conclusions 

The system of linear equations, A0x = b0, represents N intersecting hyperplanes. Some geometrical 

properties of such a system (assuming the rows of A0 are normalized) have been investigated in this 

paper. The conclusions are listed below. 

1. A new parameter, termed here as flatness index φ0, has been defined, which characterises the 

local geometry of the intersecting hyperplanes of A0 at any point. It has been shown to satisfy the 

inequality 0 ≤ φ0 ≤ 1. For the derived matrix A (= A0
TA0), the flatness index φ satisfies 0 ≤ φ, but the 

upper limit may be greater than 1. This is so because the residuals r0 (= b0 - A0x) represent actual 

distances, while the residuals r (= b - Ax) do not.  
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2. Equations (5) and (6) relate the extreme values of φ to maximum and minimum eigenvalues.  

3. The flatness index φ reduces rapidly in the first one or two steps of SD, and then reduces further 

slowly. Using this property, lines passing through the neighbourhood of the solution can be 

obtained, which can be useful in iterative calculations. These lines also happen to be almost 

orthogonal to the eigenvector of A corresponding to the largest eigenvalue. 

4. It has been shown that if a normalized equation vTx = w, (which passes through the solution of A0x 

= b0, i.e., satisfies vTs = w) is repeatedly added k times to the original system of equations, then it 

becomes an eigenvector direction of Ak, corresponding to the largest eigenvalue λmax of Ak for k > 5 

or so. Moreover, λmax = k for k > 5 or so. The eigenvector direction of Ak, corresponding to the 

smallest eigenvalue λmin of Ak also changes significantly with k. 
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